Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(5): e23553, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38470398

RESUMEN

Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder in reproductive-aged women that frequently leads to infertility due to poor oocyte quality. In this study, we identified a new active peptide (advanced glycation end products receptors RAGE344-355 ) from PCOS follicular fluid using mass spectrometry. We found that supplementing PCOS-like mouse oocytes with RAGE344-355 attenuated both meiotic defects and oxidative stress levels, ultimately preventing developmental defects. Additionally, our results suggest that RAGE344-355 may interact with eEF1a1 to mitigate oxidative meiotic defects in PCOS-like mouse oocytes. These findings highlight the potential for further clinical development of RAGE344-355 as a potent supplement and therapeutic option for women with PCOS. This research addresses an important clinical problem and offers promising opportunities for improving oocyte quality in PCOS patients.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Animales , Ratones , Adulto , Oocitos , Suplementos Dietéticos , Estrés Oxidativo , Péptidos
2.
Bioresour Technol ; 396: 130426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341042

RESUMEN

Realizing the quick enrichment and development of denitrifying phosphorus accumulating organisms (DPAOs) in actual household wastewater and industrial nitrate wastewater has significant research significance. In this study, a novel operation mode of anaerobic-oxic-anoxic (AOA) was adopted to successfully realize the enrichment and cultivation of DPAOs in urban domestic wastewater. Adjusting influent COD to PO43--P ratio, shortening the aerobic time and decreasing the aeration volume were conducive to select DPAOs in microbial populations. The system was operated for 180 days and the DPAOs were well enriched during the stable operation with the percentage of Dechloromonas increased to 5.1 %. Accordingly, the effluent PO43--P was < 0.3 mg P/L, the removal efficiency of phosphorus was 96.9 % and the removal efficiency of nitrate was 92.5 %. Above all, DPR can be successfully applied to AOA systems with good phosphorus removal performance.


Asunto(s)
Fósforo , Aguas Residuales , Eliminación de Residuos Líquidos , Aguas del Alcantarillado , Desnitrificación , Nitrógeno , Nitratos , Anaerobiosis , Reactores Biológicos
3.
Bioresour Technol ; 393: 130128, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040313

RESUMEN

Applications of post-denitrification processes are subjected to low reaction rates caused by a lack of carbon resources. To offer a solution for reaction rate promotion, this research found a pilot-scale anaerobic/aerobic/anoxic bioreactor treating 55-120 m3/d low-strength municipal wastewater for 273 days. A short hydraulic retention time (HRT, 5-6 h) and a high nitrogen removal rate (63.2 ± 9.3 g-N/m3·d) were achieved using HRT optimization. The effluent total nitrogen concentration was maintained at 5.8 ± 1.4 mg/L while operating at a high nitrogen loading rate of 86.2 ± 12.8 g-N/m3·d. The short aeration (1.25-1.5 h) minimized the Glycogen loss. The endogenous denitrification rate increased to above 1.0 mg/(g-VSS·h). The functional genus Ca. Competibacter enriched to 2.3 %, guaranteeing the efficient post-denitrification process. Dechloromonas rose to 1.1 %, aiding in the synchronous phosphorus removal. These findings offered fresh insights into AOA processes to achieve energy/cost-saving wastewater treatment.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Aguas del Alcantarillado , Desnitrificación , Anaerobiosis , Nitrógeno , Reactores Biológicos , Fósforo , Nitrificación
4.
Water Res ; 230: 119594, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638736

RESUMEN

Integrating endogenous denitrification (ED) into partial nitrification-anammox (PNA) systems by adequately utilizing organics in municipal wastewater is a promising approach to improve nitrogen removal efficiency (NRE). In this study, a novel strategy to inhibit phosphorus-accumulating organisms (PAOs) by inducing phosphorus release and exclusion was adopted intermittently, optimizing organics allocation between PAOs and glycogen-accumulating organisms (GAOs). Enhanced ED-synergized anammox was established to treat real municipal wastewater, achieving an NRE of 97.5±2.2% and effluent total inorganic nitrogen (TIN) of less than 2.0 mg/L. With low poly-phosphorus (poly-P) levels (poly-P/VSS below 0.01 (w/w)), glycogen accumulating metabolism (GAM) acquired organics exceeded that of phosphorus accumulating metabolism (PAM) and dominated endogenous metabolism. Ca. Competibacter (GAO) dominated the community following phosphorus-rich supernatant exclusion, with abundance increasing from 3.4% to 5.7%, accompanied by enhanced ED capacity (0.2 to 1.4 mg N/g VSS /h). The enriched subgroups (GB4, GB5) of Ca. Competibcater established a consistent nitrate cycle with anammox bacteria (AnAOB) through endogenous partial denitrification (EPD) at a ∆NO2--N/∆NH4+-N of 0.91±0.11, guaranteeing the maintenance of AnAOB abundance and performance. These results provide new insights into the flexibility of PNA for the energy-efficient treatment of low-strength ammonium wastewater.


Asunto(s)
Nitrificación , Aguas Residuales , Desnitrificación , Aguas del Alcantarillado/microbiología , Nitrógeno/metabolismo , Glucógeno/metabolismo , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Fósforo/metabolismo , Bacterias/metabolismo , Oxidación-Reducción
5.
Journal of Preventive Medicine ; (12): 861-865, 2023.
Artículo en Chino | WPRIM | ID: wpr-997143

RESUMEN

Objective@#To investigate the effects of lactoprotein iron chelates on rats with iron deficiency anaemia (IDA), so as to provide insights into developing and utilizing novel iron supplements.@*Methods@#Seventy weaning female SPF-graded rats of the SD strain were randomly divided into the control group (A), model group (B), ferrous sulfate group (C), lactoferrin group (D), lactoferrin iron chelate group (E), Casein oligopeptide iron chelate group (F) and whey protein oligopeptide iron chelate group (G), with 10 rats in each group. The rats in group A were fed with normal diet, and the others were fed with poor iron diet for IDA modeling. The corresponding interventions were given by intragastric administration once a day. The iron ion concentrations of group C, E, F and G were 2.0 mg/kg, and the protein and oligopeptide concentrations of group D, E, F and G were 2 000 mg/kg. Body weight and hemoglobin of rats were measured weekly during 21-day intervention. At the end, peripheral blood samples were collected, and blood routine, iron metabolism and liver function indicators were determined. @*Results@#After the intervention, among blood routine indicators, the rats in group C, E, F and G showed elevated hemoglobin, red blood cell, mean corpuscular volume and hematocrit, and decreased free protoporphyrin and mean corpuscular hemoglobin concentration when compared with the rats in group B (all P<0.05); among iron metabolism indicators, the rats in group C, E and G showed elevated serum ferritin, the rats in group C, E, F and G showed elevated serum iron, the rats in group C, D, E, F and G showed decreased unsaturated iron binding capacity and total iron binding capacity when compared with the rats in group B (all P<0.05); among liver function indicators, the rats in group E and G showed decreased alanine transaminase when compared with the rats in group B (both P<0.05). @*Conclusions@#Lactoprotein alone could not completely improve IDA in rats compared with traditional iron supplement (ferrous sulfate). Lactoprotein iron chelate, especially whey protein oligopeptide iron chelate, could significantly improve IDA, iron reserve and liver function damage in rats.

6.
Sci Rep ; 10(1): 22154, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335113

RESUMEN

Existing methods for testing prosthetic implants suffer from critical limitations, creating an urgent need for new strategies that facilitate research and development of implants with enhanced osseointegration potential. Herein, we describe a novel, biomimetic, human bone platform for advanced testing of implants in vitro, and demonstrate the scientific validity and predictive value of this approach using an assortment of complementary evaluation methods. We anchored titanium (Ti) and stainless steel (SS) implants into biomimetic scaffolds, seeded with human induced mesenchymal stem cells, to recapitulate the osseointegration process in vitro. We show distinct patterns of gene expression, matrix deposition, and mineralization in response to the two materials, with Ti implants ultimately resulting in stronger integration strength, as seen in other preclinical and clinical studies. Interestingly, RNAseq analysis reveals that the TGF-beta and the FGF2 pathways are overexpressed in response to Ti implants, while the Wnt, BMP, and IGF pathways are overexpressed in response to SS implants. High-resolution imaging shows significantly increased tissue mineralization and calcium deposition at the tissue-implant interface in response to Ti implants, contributing to a twofold increase in pullout strength compared to SS implants. Our technology creates unprecedented research opportunities towards the design of implants and biomaterials that can be personalized, and exhibit enhanced osseointegration potential, with reduced need for animal testing.


Asunto(s)
Materiales Biomiméticos , Biomimética , Huesos , Prótesis e Implantes , Ingeniería de Tejidos , Biomimética/métodos , Humanos , Ensayo de Materiales , Oseointegración , Acero Inoxidable , Ingeniería de Tejidos/métodos , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA