Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 912-923, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621898

RESUMEN

With the promotion of chemical fertilizer and pesticide reduction and green production of traditional Chinese medicines, microbial fertilizers have become a hot way to achieve the zero-growth of chemical fertilizers and pesticides, improve the yield and qua-lity of medicinal plants, maintain soil health, and promote the sustainable development of the planting industry of Chinese herbal medicines. Soil conditions and microenvironments are crucial to the growth, development, and quality formation of medicinal plants. Microbial fertilizers, as environmentally friendly fertilizers acting on the soil, can improve soil quality by replenishing organic matter and promoting the metabolism of beneficial microorganisms to improve the yield and quality of medicinal plants. In this regard, understanding the mechanism of microbial fertilizer in regulating the quality formation of medicinal plants is crucial for the development of herbal eco-agriculture. This study introduces the processes of microbial fertilizers in improving soil properties, participating in soil nutrient cycling, enhancing the resistance of medicinal plants, and promoting the accumulation of medicinal components to summarize the mechanisms and roles of bacterial fertilizers in regulating the quality formation of medicinal plants. Furthermore, this paper introduces the application of bacterial fertilizers in medicinal plants and makes an outlook on their development, with a view to providing a scientific basis for using microbial fertilizers to improve the quality of Chinese herbal medicines, improve the soil environment, promote the sustainable development of eco-agriculture of traditional Chinese medicine, and popularize the application of microbial fertilizers.


Asunto(s)
Plaguicidas , Plantas Medicinales , Fertilizantes , Agricultura , Suelo/química , Bacterias/genética , Extractos Vegetales , Microbiología del Suelo
2.
Sci Total Environ ; 912: 168956, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043817

RESUMEN

To solve the problem of excessive heavy metals in farmland soil, there is a dire need for research effort to screen for the soil passivator materials. This study aimed to develop a practical novel approach for improving the potato growth and remedial effectiveness of the metals by optimal combination and dosage of various passivators. Experimental treatments were comprised of various levels of passivating agents (sepiolite, quicklime and calcium magnesium phosphate) in individual and combined form. Results showed that application of passivating agents significantly enhanced growth by optimizing photosynthetic attributes, enzymatic antioxidants, and soil health. Balanced application of passivators effectively reduce the bioavailability of metals, curbing their uptake by potato plants. Sole application of all the agents results statistically similar outcomes as compared with combined form. Additionally, passivators indirectly enhance the activity of essential antioxidant enzymes. Synergistic effect of all the agents significantly improved the tuber quality by decreasing the accumulation of proline, malondialdehyde content, and bioaccumulation of Cu, Pb, Cd, and As in potato parts. In crux, combined usage of passivating agents proved to be of better growth, improvement in antioxidative defense system, and better quality of potato. By mitigating heavy metal contamination, passivators not only enhance crop quality and yield but also ensure heavy metal-free potatoes that meet stringent food safety standards.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum tuberosum , Suelo , Antioxidantes , Contaminantes del Suelo/análisis , Metales Pesados/análisis
3.
Biotechnol J ; 19(1): e2300385, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37903287

RESUMEN

As a carbohydrate elicitor, Riclin octaose (Rioc) activates the pattern-triggered immunity of Solanum tuberosum L., while how the plant perceives Rioc is unknown. Here, a pattern recognition receptor StLYK3 (LysM receptor-like kinase3) whose transcription level was significantly up-regulated after Rioc elicitation was investigated in vitro and in silico. The nucleotide that encoded the ectodomain of StLYK3 (StLYK3-ECD) was heterologously expressed in the Pichia pastoris strain GS115. The purified StLYK3-ECD had the molecular weight of 25.08 kDa and pI of 5.69. Afterwards interaction between StLYK3-ECD and Rioc was analyzed by isothermal titration calorimetry. The molar ratio of ligand to receptor, dissociation constant, and enthalpy were 1.28 ± 0.04, 26.7 ± 3.1 µM, and -45.0 ± 1.8 kJ mol-1 , respectively. Besides, molecular dynamics results indicated that StLYK3-ECD contained three carbohydrate-binding motifs and the first two motifs probably contributed to the interaction with Rioc via hydrogen bond and van de Waals' forces. Amino acids containing hydroxyl, amidic, and sulfhydryl groups took the main portion in the docking site. Moreover, replacing the 92nd threonyl (T) of StLYK3-ECD with valyl (V) resulted in the alteration of the preferred docking site. The dissociation constant drastically increased to 841.6 ± 232.4 µM. In conclusion, StLYK3 was a potential receptor of Rioc.


Asunto(s)
Solanum tuberosum , Ligandos , Termodinámica , Carbohidratos
4.
J Ethnopharmacol ; 319(Pt 3): 117328, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37865275

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huayuwendan decoction (HYWD) is a broad used traditional Chinese medicine and therapeutic effects against type 2 diabetes mellitus (T2DM). The mechanism of HYWD on the treatment of T2DM is still unclear. AIM OF THE STUDY: For this reason, this study was performed to uncover the effects and mechanism of action of HYWD on T2DM. MATERIALS AND METHODS: Male Wistar rats were chosen to set up the T2DM model. This study was randomly divided into six groups: CON (control), MOD (model), HYWDL (Huayuwendan decoction Low Dose), HYWDM (Huayuwendan decoction Middle Dose), HYWDH (Huayuwendan decoction High Dose), and MET (Metformin). Body weight gains were estimated. Using H&E staining, pathological alterations was explored. The serums of fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2 h PG) were detected by Roche blood glucose meter. LDL-C and HDL-C were analyzed by automatic biochemical analyzer. Network pharmacology analyzed the active ingredients, drug targets, and key pathways of HYWD in T2DM treatment. The islet function and inflammation related factors were determined by ELISA. NF-κB signaling pathway or IL-17 signaling pathway related proteins were analyzed by Western blotting. IL-17RA were determined by immunohistochemistry analyze. RESULTS: HYWD inhibited weight gain in T2DM rats. Histopathological results showed that HYWD inhibits liver injury. HYWD suppressed LDL-C and enhanced HDL-C in serum of T2DM rats. HYWD reduce FPG and 2 h PG, inhibit Fins, GSP and IRI, but enhance IAI in serum of T2DM rats. In addition, the network pharmacology results identified 292 chemical compounds in HYWD. 279 candidate targets were recognized, including IL-17A, IL-1ß, NFкB, stats, mmp3, and cxcl2. The pathways revealed that the possible target of HYWD related with the regulation of IL-17 signaling pathway and NF-κB pathway. Then in vivo study, HYWD reduced the levels of IL-6, TNF-α, IL-17 and IL-1ß in serum and inhibit the protein expression involved in IL-17/NF-κB signaling pathway. CONCLUSIONS: The study demonstrates that HYWD may improve T2DM by repressing with the IL-17/NF-κB signaling pathway, which offer encouraging support for using alternative medicine of type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Masculino , Ratas , Animales , FN-kappa B , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Interleucina-17 , Glucemia , LDL-Colesterol , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Wistar , Transducción de Señal , Inflamación/tratamiento farmacológico
5.
Sci Adv ; 9(49): eadi2465, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055816

RESUMEN

Adenosine 5'-triphosphate citrate lyase (ACLY) is a cytosolic enzyme that converts citrate into acetyl-coenzyme A for fatty acid and cholesterol biosynthesis. ACLY is up-regulated or activated in many cancers, and targeting ACLY by inhibitors holds promise as potential cancer therapy. However, the role of ACLY in cancer immunity regulation remains poorly understood. Here, we show that ACLY inhibition up-regulates PD-L1 immune checkpoint expression in cancer cells and induces T cell dysfunction to drive immunosuppression and compromise its antitumor effect in immunocompetent mice. Mechanistically, ACLY inhibition causes polyunsaturated fatty acid (PUFA) peroxidation and mitochondrial damage, which triggers mitochondrial DNA leakage to activate the cGAS-STING innate immune pathway. Pharmacological and genetic inhibition of ACLY overcomes cancer resistance to anti-PD-L1 therapy in a cGAS-dependent manner. Furthermore, dietary PUFA supplementation mirrors the enhanced efficacy of PD-L1 blockade by ACLY inhibition. These findings reveal an immunomodulatory role of ACLY and provide combinatorial strategies to overcome immunotherapy resistance in tumors.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Ratones , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Ácidos Grasos Insaturados , Nucleotidiltransferasas , Inmunoterapia
6.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6021-6029, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114208

RESUMEN

Dao-di herbs are the treasure of Chinese materia medica and one of the characteristic research objects of traditional Chinese medicine(TCM). Probing into the microevolution of Dao-di herbs can help to reveal their biological essence and quality formation mechanisms. The progress in molecular biology and omics provides the possibility to elucidate the phylogenetic and quality forming characteristics of Dao-di herbs at the molecular level. In particular, genomics serves as a powerful tool to decipher the genetic origins of Dao-di herbs, and molecular markers have been widely used in the research on the genetic diversity and population structure of Dao-di herbs. Focusing on the excellent traits and quality of Dao-di herbs, this paper reviews the studies about the microevolution process of quality formation mechanisms of Dao-di herbs with the application of molecular markers and omics, aiming to underpin the protection and utilization of TCM resources.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Filogenia , Plantas Medicinales/química , Medicina Tradicional China , Fenotipo
7.
Plant Dis ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127629

RESUMEN

Astragalus mongholicus Bge. [A. membranaceus Bge. var. mongholicus (Bge.) Hsiao] is a highly valuable perennial medicinal plant mainly distributed in China, whose dry roots are known as Huangqi in traditional Chinese medicine for reinforcing vital energy, strengthening superficial resistance, and promoting tissue regeneration (Lin et al. 2000). A. mongholicus roots of high quality are produced in Northwest and North China. Since July 2021, powdery mildew outbreaks happened annually on the leaves of A. mongholicus in a plantation (123° 56' 40'' E, 47° 22' 20'' N) in Qiqihar city, Heilongjiang Province, China. Disease incidence reached 100% by October (Fig. 1A-C), causing severe impairment of growth. Powdery mildew spots of circular or irregular shapes emerged on upper surface of leaf, resulting in plentiful lesion specks. Dense white hyphae appeared chaotically intertwined. Hyphae were hyaline and highly flexuous, 5.3 - 10.7 µm in diameter (n = 20). Chasmothecia were globose or slightly ovoid-shaped and turned dark brown when matured. Chasmothecia (diameter: 135.2 - 222.9 µm, n = 20) existed abundantly on the diseased leaves in the fields. Conidiophores were 89.0 - 129.9 µm in length (n = 20) and composed of one cylindrical, straight foot cell, followed by two cells and one to three conidia. Conidia were slim ellipsoid-shaped, occasionally ovoid-shaped, measuring 14.6 - 24.7 µm by 6.4 to10.4 µm, length/width ratio was 1.8 - 3.0 (n = 30). Hyphal appressoria were nipple-shaped and appeared in singular, occasionally in pairs. Unbranched germ tube emerged reaching out of the germinating conidia while forming an acute angle with the long axis. Comprehensively, the pathogen exhibited micro-morphology of the genus Erysiphe. For molecular identification, pathogen was carefully scraped off diseased leaves for DNA extraction. We used the DNA samples of three biological replicates for the sequencing of the ITS rDNA fragment (primers by (White et al. 1990). All the samples resulted in an identical ITS sequence (deposited in GenBank as OQ390098.1). It displayed 99.83% identity with OP806835.1 of an E. astragali voucher collected in Iran (Fig. 1D-M, O). Hence, our pathogen was identified as an E. astragali stain. Additionally, we amplified the Mcm7 sequence (using primers by (Ellingham et al. 2019), deposited as OQ397582.1). We propagated 40-day-old A. mongholicus plants via germinating seeds in pot soil and performed pathogenicity tests. Firstly, we incubated detached healthy leaves of propagated plants with severely symptomatic leaves collected from the fields in petri dishes under saturated moisture content and room temperature. Powdery mildew symptoms emerged on each healthy leaf (n = 5) after two weeks. Further, we infected healthy plants (n = 5) by gently pressing and rubbing symptomatic leaves on each healthy leaf, and kept them in a greenhouse (24 ℃, 80% humidity, 16/8-hour light/dark cycle). After a month, symptoms emerged on a number of leaves of each infected plant. We performed micromorphology observation (Fig. 1N-P) and ITS sequencing to confirm that the results fulfilled Koch's postulates. Powdery mildew caused by E. astragali on A. strictus in Tibet (Wang and Jiang 2023) and on A. scaberrimus in Inner Mongolia (Sun et al. 2023) have been reported. Here we report powdery mildew caused by E. astragali on Astragalus mongholicus for the first time. These Astragalus spp. are all acknowledged to have medicinal values in China but their usages are quite different.

8.
Nat Commun ; 14(1): 6269, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805657

RESUMEN

The clinical benefit of tyrosine kinase inhibitors (TKIs)-based systemic therapy for advanced hepatocellular carcinoma (HCC) is limited due to drug resistance. Here, we uncover that lipid metabolism reprogramming mediated by unconventional prefoldin RPB5 interactor (URI) endows HCC with resistance to TKIs-induced ferroptosis. Mechanistically, URI directly interacts with TRIM28 and promotes p53 ubiquitination and degradation in a TRIM28-MDM2 dependent manner. Importantly, p53 binds to the promoter of stearoyl-CoA desaturase 1 (SCD1) and represses its transcription. High expression of URI is correlated with high level of SCD1 and their synergetic expression predicts poor prognosis and TKIs resistance in HCC. The combination of SCD1 inhibitor aramchol and deuterated sorafenib derivative donafenib displays promising anti-tumor effects in p53-wild type HCC patient-derived organoids and xenografted tumors. This combination therapy has potential clinical benefits for the patients with advanced HCC who have wild-type p53 and high levels of URI/SCD1.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Metabolismo de los Lípidos , Factores de Transcripción/metabolismo
9.
Front Plant Sci ; 14: 1237800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841605

RESUMEN

Introduction: Atractylodes lancea is widely distributed in East Asia, ranging from Amur to south-central China. The rhizome of A. lancea is commonly used in traditional Chinese medicine, however, the quality of products varies across different regions with different geochemical characteristics. Method: This study aimed to identify the chemotypes of A. lancea from different areas and screen for chemical markers by quantifying volatile organic compounds (VOCs) using a targeted metabolomics approach based on GC-MS/MS. Results: The A. lancea distributed in Hubei, Anhui, Shaanxi, and a region west of Henan province was classified as the Hubei Chemotype (HBA). HBA is characterized by high content of ß-eudesmol and hinesol with lower levels of atractylodin and atractylon. In contrast, the Maoshan Chemotype (MA) from Jiangsu, Shandong, Shanxi, Hebei, Inner Mongolia, and other northern regions, exhibited high levels of atractylodin and atractylon. A total of 15 categories of VOCs metabolites were detected and identified, revealing significant differences in the profiles of terpenoid, heterocyclic compound, ester, and ketone among different areas. Multivariate statistics indicated that 6 compounds and 455 metabolites could serve as candidate markers for differentiating A. lancea obtained from the southern, northern, and Maoshan areas. Discussion: This comprehensive analysis provides a chemical fingerprint of selected A. lancea. Our results highlight the potential of metabolite profiling combined with chemometrics for authenticating the geographical origin of A. lancea.

10.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4942-4949, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802835

RESUMEN

Root rot is a microbial disease that is difficult to control and can result in serious losses in the planting of most Chinese medicinal materials. As high as 87.6% of roots or rhizomes of Chinese medicinal materials are susceptible to root rot, which seriously affects the cultivation development of Chinese medicinal materials. Trichoderma fungi, possessing biological control functions, can induce plants to improve their resistance to microbial diseases, promote plant growth, and effectively reduce the losses caused by various microbial diseases on cultivation. At present, Trichoderma is rarely used in the cultivation of Chinese medicinal materials, so it has great application potential for the prevention and control of root rot diseases in farmed Chinese medicinal materials. Based on the above situation, after comparison and discussion, it is believed that compared with chemical control and physical control, biological control of root rot diseases of Chinese medicinal materials is more efficient and meets the development needs of Chinese medicinal materials ecological planting in China. This paper reviewed the progress in the research and application of Trichoderma in the control of root rot diseases in the root and rhizome of farmed Chinese medicinal materials in the past 10 years and found that most of the current research on the biological control of root rot diseases in Chinese medicinal materials was mostly limited to the verification of the inhibitory effect of Trichoderma strains on the growth of the pathogenic microbes. Studies on the induction effect of Trichoderma on Chinese medicinal materials are not in depth. Studies on the responding mechanisms of most Chinese medicinal materials to Trichoderma are highly absent. Moreover, there are few reports on field experiments, which indicates that there is a long way to go before Trichoderma is widely applied in the farming practice of Chinese medicinal materials. To sum up, this paper aimed to link the present and the future and advocated further relevant research and more experiments on the application of Trichoderma in the farming of Chinese medicinal materials.


Asunto(s)
Trichoderma , Agricultura , Granjas , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Rizoma
11.
Front Vet Sci ; 10: 1231833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37565082

RESUMEN

Currently, Chinese herbal feed additives (CHFA) are commonly utilized in domestic pig farms. However, their impact on the sperm quality and reproductive capacity of imported breeding boars has yet to be thoroughly explored. In this study, the effect of CHFA on the sperm quality and reproductive capacity of the imported Duroc boars was investigated. Sixteen boars were randomly divided into control group and experimental (CHFA treated) group and fed normal or CHFA-levels containing diets, respectively. The sperm quality and reproductive hormone levels were periodically tested, and the reproductive capacity with breeding sows were evaluated. The results showed that the CHFA treated group boars significantly improved sperm volume, sperm concentration, and motility and reduced the sperm abnormalities. Furthermore, the serum levels of reproductive hormone such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) in the CHFA treated group were significantly higher than those in the control group. Although there was no significant difference in the initial birth weight of piglets between the two groups, the CHFA treated group had a significantly higher average number of piglets born, the average number of piglets born alive, the number of piglets weaned at 28 days, and the weaning weight compared to the control group. These findings suggest that CHFA can significantly improve the sperm quality of breeding boars and enhance their reproductive hormone levels as well as the reproductive capacity, providing direct evidence for the further application of CHFA in the management of breeding boars in China.

12.
J Am Chem Soc ; 145(31): 17377-17388, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37497917

RESUMEN

The five-year survival rate of hepatocellular carcinoma (HCC) remains unsatisfactory. This reflects, in part, the paucity of effective methods that allow the target-specific diagnosis and therapy of HCC. Here, we report a strategy based on engineered human serum albumin (HSA) that permits the HCC-targeted delivery of diagnostic and therapeutic agents. Covalent cysteine conjugation combined with the exploitation of host-guest chemistry was used to effect the orthogonal functionalization of HSA with two functionally independent peptides. One of these peptides targets glypican-3 (GPC-3), an HCC-specific biomarker, while the second reduces macrophage phagocytosis through immune-checkpoint stimulation. This orthogonally engineered HSA proved effective for the GPC-3-targeted delivery of near-infrared fluorescent and phototherapeutic agents, thus permitting target-specific optical visualization and photodynamic ablation of HCC in vivo. This study thus offers new insights into specificity-enhanced fluorescence-guided surgery and phototherapy of HCC through the orthogonal engineering of biocompatible proteins.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/terapia , Fototerapia/métodos , Albúminas , Albúmina Sérica Humana , Macrófagos/metabolismo , Fagocitosis
13.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2896-2903, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381971

RESUMEN

A rich diversity of wild medicinal plant resources is distributed in China, but the breeding of new plant varieties of Chinese medicinal plants started late and the breeding level is relatively weak. Chinese medicinal plant resources are the foundation for new varieties breeding, and the plant variety rights(PVP) are of great significance for the protection and development of germplasm resources. However, most Chinese medicinal plants do not have a distinctness, uniformity, and stability(DUS) testing guideline. The Ministry of Agriculture and Rural Affairs has put 191 plant species(genera) on protection lists, of which only 30 are medicinal species(genera). At the same time, only 29 of 293 species(genera) plants in the Protection List of New Plant Varieties of the People's Republic of China(Forest and Grass) belong to Chinese medicinal plants. The number of PVP applications and authorization of Chinese medicinal plants is rare, and the composition of variety is unreasonable. Up to now, 29 species(genera) of DUS test guidelines for Chinese medicinal plants have been developed. Some basic problems in the breeding of new varieties of Chinese medicinal plants have appeared, such as the small number of new varieties and insufficient utilization of Chinese medicinal plant resources. This paper reviewed the current situation of breeding of new varieties of Chinese medicinal plants and the research progress of DUS test guidelines in China and discussed the application of biotechnology in the field of Chinese medicinal plant breeding and the existing problems in DUS testing. This paper guides the further application of DUS to protect and utilize the germplasm resources of Chinese medicinal plants.


Asunto(s)
Plantas Medicinales , Agricultura , Biotecnología , Fitomejoramiento , Plantas Medicinales/genética
14.
Zhongguo Zhen Jiu ; 43(5): 537-44, 2023 May 12.
Artículo en Chino | MEDLINE | ID: mdl-37161807

RESUMEN

OBJECTIVE: To explore the effect of "Zhibian" (BL 54)-to-"Shuidao" (ST 28) needle insertion on the ovarian function in the rats with primary ovarian insufficiency (POI) and the potential effect mechanism based on the Fas/FADD/Caspase-8 of death receptor pathway. METHODS: Forty-eight female SD rats were randomly divided into a blank group, a model group, a medication group and an acupuncture group, with 12 rats in each group. Except in the blank group, the rats in the other groups were intraperitoneally injected with cyclophosphamide to establish the POI model. In the acupuncture group, after successful modeling, the intervention was given with "Zhibian" (BL 54)-to- "Shuidao" (ST 28) needle insertion, once daily, 30 min in each intervention; and the duration of intervention was 4 weeks. In the medication group, estradiol valerate tablets were administered intragastrically, 0.09 mg•kg-1•d-1, for 4 weeks. The general situation and the estrous cycle of the rats were compared among groups. Using ELISA, the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) in the serum were detected. HE staining was adopted to observe the morphological changes of ovarian tissue of rats. The protein expression of Fas, FADD and Caspase-8 in ovarian tissue was detected with immunohistochemistry and Western blot. RESULTS: After modeling, except the rats of the blank group, the rats of the other groups had dry fur, lost hair, low spirits, reduced food intake, increased urination and loose stool. After intervention, the stool became regular gradually in the acupuncture group and the medication group. The percentage of estrous cycle disturbance was increased in the rats of the model group when compared with the blank group (P<0.01); in comparison with the model group, the percentages of estrous cycle disturbance were reduced in the acupuncture group and the medication group after intervention (P<0.01). When compared with the blank group, the body mass and E2 content in the serum were lower (P<0.01), the levels of FSH and LH in the serum and the protein expression levels of Fas, FADD and Caspase-8 were increased (P<0.01) in the model group. Compared with the model group, the body mass and E2 contents in the serum were higher (P<0.01), the levels of FSH and LH in the serum and the protein expression levels of Fas, FADD and Caspase-8 were reduced (P<0.01) in the acupuncture group and the medication group. CONCLUSION: "Zhibian" (BL 54)-to-"Shuidao" (ST 28) needle insertion can effectively improve the ovarian function of POI rats, and its effect mechanism may be related to regulating the serum sex hormone levels, reducing the expression of Fas, FADD and Caspase-8 in ovarian tissue and retarding apoptosis of ovarian cells.


Asunto(s)
Transducción de Señal , Femenino , Animales , Ratas , Agujas , Receptores de Muerte Celular/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1186-1193, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005802

RESUMEN

Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.


Asunto(s)
Plantas Medicinales , Desarrollo Sostenible , Plantas Medicinales/genética , Fitomejoramiento , Medicina Tradicional China , Tecnología
16.
Zhen Ci Yan Jiu ; 48(3): 259-66, 2023 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-36951078

RESUMEN

OBJECTIVE: To observe the effect of penetrative needling of "Zhibian" (BL54) through "Shuidao" (ST28) on the expressions of death receptor pathway-related protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors, as death receptor 4 (DR4), death receptor 5 (DR5), decoy receptor 1 (DcR1) and decoy receptor 2 (DcR2) in premature ovarian insufficiency (POI) rats, so as to explore its mechanisms underlying improvement of POI. METHODS: Forty female SD rats were randomly divided into blank control, model, penetrative needling and medication (estradiol valerate) groups, with 10 rats in each group. The POI model was established by intraperitoneal injection of cyclophosphamide (D1: 50 mg·kg-1·d-1, D2 to D15: 8 mg·kg-1·d-1, for a total of 15 d). After successful modeling, the rats in the penetrative needling group received penetrative needling of BL54 through ST28, with the needle retained for 30 min, once a day for a total of 4 weeks. Rats of the medication group received gavage of estradiol valerate (0.09 mg·kg-1·d-1) once daily for 4 weeks. After the intervention, the content of serum follicles of stimulation hormone (FSH),lateinizing hormone (LH),estradiol (E2) and vascular endothelial growth factor (VEGF) were assayed using enzyme-linked immunosorbent assay, and histopathological changes of ovarian tissue and the number of follicles were observed under light microscope after H.E. staining. The expression levels of TRAIL, DR4, DR5, DcR1, DcR2, and Fas-associated death domain (FADD) in ovarian tissues were detected using quantitative real-time PCR, and the immunoactivity of ovarian TRAIL, DR4 and DR5 detected using immunohistochemistry. The body weight and the damp weight of ovary were measured for calculating the ovarian coefficient. RESULTS: Compared with the blank control group, the E2 and VEGF contents, ovarian coefficient, and the number of the primary, secondary and sinus follicles were significantly decreased (P<0.01) in the model group, whereas FSH and LH contents, the atretic follicle number, TRAIL, DR4 and DR5 immunoactivity, and the expression levels of TRAIL, DR4, DR5 and FADD mRNAs considerably increased in the model group (P<0.01). In comparison with the model group, the decrease of the VEGF content, ovarian coefficient, and the number of the primary, secondary and sinus follicles, and the increase of the atretic follicle number, TRAIL, DR4 and DR5 immunoactivity, and expression levels of TRAIL, DR4, DR5 and FADD mRNAs were reversed in both penetrative needling and medication groups (P<0.01, P<0.05). The number of primary follicles was significantly more in the medication group than in the penetrative needling group (P<0.01). CONCLUSION: Penetrative needling of BL54 and ST28 can improve ovarian weight and promote follicular development in POI rats, which may be associated with its function in down-regulating the expression of pro-apoptotic proteins TRAIL, DR4, DR5 and FADD of the death receptor pathway to inhibit apoptosis of ovarian granulosa cells.


Asunto(s)
Insuficiencia Ovárica Primaria , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratas , Femenino , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Ratas Sprague-Dawley , Ligandos , Apoptosis , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/terapia , Factor de Necrosis Tumoral alfa , Estradiol , Receptores de Muerte Celular , Hormona Folículo Estimulante
17.
Front Plant Sci ; 13: 1032480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531372

RESUMEN

Atractylodes lancea is an important medicinal plant in traditional Chinese medicine, its rhizome is rich of volatile secondary metabolites with medicinal values and is largely demanded in modern markets. Currently, supply of high-yield, high-quality A. lancea is mainly achieved via cultivation. Certain soil microbes can benefit plant growth, secondary metabolism and induce resistance to environmental stresses. Hence, studies on the effects of soil microbe communities and isolates microorganisms on A. lancea is extremely meaningful for future application of microbes on cultivation. Here we investigated the effects of the inoculation with an entire soil microbial community on the growth, resistance to drought, and accumulation of major medicinal compounds (hinesol, ß-eudesmol, atractylon and atractylodin) of A. lancea. We analyzed the interaction between A. lancea and the soil microbes at the phylum and genus levels under drought stress of different severities (inflicted by 0%, 10% and 25% PEG6000 treatments). Our results showed that inoculation with soil microbes promoted the growth, root biomass yield, medicinal compound accumulation, and rendered drought-resistant traits of A. lancea, including relatively high root:shoot ratio and high root water content under drought. Moreover, our results suggested drought stress was more powerful than the selectivity of A. lancea in shaping the root-associated microbial communities; also, the fungal communities had a stronger role than the bacterial communities in protecting A. lancea from drought. Specific microbial clades that might have a role in protecting A. lancea from drought stress were identified: at the genus level, the rhizospheric bacteria Bacillus, Dylla and Actinomadura, and rhizospheric fungi Chaetomium, Acrophialophora, Trichoderma and Thielava, the root endophytic bacteria Burkholderia-Caballeronia-Paraburkholderia, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Dylla and Actinomadura, and the root endophytic fungus Fusarium were closely associated with A. lancea under drought stress. Additionally, we acquired several endophytic Paenibacillus, Paraburkholderia and Fusarium strains and verified they had differential promoting effects on the medicinal compound accumulation in A. lancea root. This study reports the interaction between A. lancea and soil microbe communities under drought stress, and provides insights for improving the outcomes in A. lancea farming via applying microbe inoculation.

18.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5397-5405, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471953

RESUMEN

Medicinal plants are the main source of clinical medication in traditional Chinese medicine(TCM). China has achieved large-scale cultivation and production of medicinal plants. As an important resource for the sustainable development of agriculture in the future, microorganisms can also promote the green, ecological and high-quality development of Chinese medicine agriculture. However, research on the medicinal plant microbiome is still limited. Therefore, based on the development timeline of microbiome research, the present study reviewed the origin, technology, and hotspots of microbiome research and proposed some suggestions for future research according to the advances in medicinal plant microbiome.(1)Systematic investigation of medicinal plant microbiome on the species, genus, and family levels should be carried out on the medicinal plants of different chemotypes in order to reveal the coevolution of the microorganisms and their host plants.(2)Spatial and temporal research on medicinal plant microbiome should be performed to reveal the effects of microorganisms on the growth, development, and secondary metabolite accumulation of medicinal plants, as well as the underlying mechanisms.(3)Model medicinal plant species should be selected and microorganism-plant interaction research models should be established.(4)Core microbiome of medicinal plants should be explored for the future application of crucial microbes in the sustaina-ble agriculture of Chinese medicine.(5)Breeding of medicinal plant-associated microbes should be carried out to lay the foundation for novel medicinal plant breeding strategies.(6)High-throughput sequencing, traditional incubation, and isolation of microbes should be combined to study medicinal plant microbiome, thereby promoting the exploitation and application of uncultured microbial strains.(7)Platforms for the preservation of medicinal plant-associated microbe strains and data of their metabolites should be established and the exchange of information and cooperation between these platforms should be subsequently enhanced. With these suggestions, the efficient and rapid development of medicinal plant microbiome research is expected to be promoted.


Asunto(s)
Microbiota , Plantas Medicinales , Fitomejoramiento , Medicina Tradicional China , Agricultura
19.
Sci Total Environ ; 845: 157260, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820524

RESUMEN

Owing to their widespread application and use, microplastics (MPs) and antibiotics coexist in the sewage treatment systems. In this study, the effects and mechanisms of the combined stress of MPs and ciprofloxacin (CIP) on phosphorus removal by phosphorus-accumulating organisms (PAOs) were investigated. This study found that the four types of MPs and CIP exhibited different antagonistic effects on the inhibition of phosphorus removal by PAO. MPs reduced the effective concentration of CIP through adsorption and thus reduced its toxicity, which was affected by the biofilms on MPs. In addition, CIP may cause PAO to produce more extracellular polymeric substances, which reduces the physical and oxidative stress of MPs on PAO. Our results are helpful as they increase the understanding of the effects of complex emerging pollutants in sewage systems and propose measures to strengthen the biological phosphorus removal in sewage treatment processes.


Asunto(s)
Shewanella , Purificación del Agua , Antibacterianos/farmacología , Reactores Biológicos , Ciprofloxacina , Microplásticos , Fósforo , Plásticos , Aguas del Alcantarillado , Purificación del Agua/métodos
20.
Plant Sci ; 322: 111349, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35709981

RESUMEN

Promoting both root growth and defense is conducive to the production of potatoes (Solanum tuberosum L.), while the role of elicitors in this topic hasn't been fully understood. To investigate the effect of Riclinoctaose (RiOc) on root growth and defense, potato tissue cuttings were cultivated with different concentration of RiOc (0, 50, 200 mg/L) for 5 weeks and changes in root morphology, transcription, enzymatic and metabolomic profiles were monitored over time. The results indicated that RiOc triggered the salicylic acid (SA)-mediated defense response and facilitated the growth of adventitious and lateral roots in a dose- and time-dependent manner. MPK3/MPK6, SA- and auxin-signaling pathways and transcription factors such as WUS, SCR and GRAS4/GRAS9 participated in this process. Moreover, the 1H NMR based metabolome profiling demonstrated that potato roots altered the primary metabolism to respond to the RiOc elicitation and efficiency in production and allocation of defense and growth-related metabolites was improved. After 5-week treatment, the level of glucose, N-acetylglucosamine, glutamine, asparagine, isoleucine, valine, 3-hydroxyisovalerate and ferulate increased, while acetate, acetoacetate, fucose, and 2-hydroxyphenylacetate declined. In conclusion, RiOc played dual roles in activating the SA-mediated defense response and in promoting growth of potato roots by inducing changes in root transcription and metabolism.


Asunto(s)
Solanum tuberosum , Carbohidratos , Regulación de la Expresión Génica de las Plantas , Metaboloma , Raíces de Plantas/metabolismo , Ácido Salicílico/metabolismo , Solanum tuberosum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA