Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 119(1): 252-265, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38596892

RESUMEN

Chicoric acid is the major active ingredient of the world-popular medicinal plant purple coneflower (Echinacea purpurea (L.) Menoch). It is recognized as the quality index of commercial hot-selling Echinacea products. While the biosynthetic pathway of chicoric acid in purple coneflower has been elucidated recently, its regulatory network remains elusive. Through co-expression and phylogenetic analysis, we found EpMYB2, a typical R2R3-type MYB transcription factor (TF) responsive to methyl jasmonate (MeJA) simulation, is a positive regulator of chicoric acid biosynthesis. In addition to directly regulating chicoric acid biosynthetic genes, EpMYB2 positively regulates genes of the upstream shikimate pathway. We also found that EpMYC2 could activate the expression of EpMYB2 by binding to its G-box site, and the EpMYC2-EpMYB2 module is involved in the MeJA-induced chicoric acid biosynthesis. Overall, we identified an MYB TF that positively regulates the biosynthesis of chicoric acid by activating both primary and specialized metabolic genes. EpMYB2 links the gap between the JA signaling pathway and chicoric acid biosynthesis. This work opens a new direction toward engineering purple coneflower with higher medicinal qualities.


Asunto(s)
Ácidos Cafeicos , Echinacea , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Succinatos , Factores de Transcripción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Succinatos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Cafeicos/metabolismo , Echinacea/genética , Echinacea/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Filogenia , Acetatos/farmacología
2.
aBIOTECH ; 3(4): 267-280, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36533268

RESUMEN

Lutein is an oxygen-containing carotenoid synthesized in plant chloroplasts and chromoplasts. It plays an indispensable role in promoting plant growth and maintaining eye health in humans. The rate-limiting step of lutein biosynthesis is catalyzed by the lycopene ε-cyclase enzyme (LCYE). Although great progress has been made in the identification of transcription factors involved in the lutein biosynthetic pathway, many systematic molecular mechanisms remain to be elucidated. Here, using co-expression analysis, we identified a gene, G2-LIKE CAROTENOID REGULATOR (SlGCR), encoding a GARP G2-like transcription factor, as the potential regulator of SlLCYE in tomato. Silencing of SlGCR reduced the expression of carotenoid biosynthetic genes and the accumulation of carotenoids in tomato leaves. By contrast, overexpression of SlGCR in tomato fruit significantly increased the expression of relevant genes and enhanced the accumulation of carotenoids. SlGCR can directly bind to the SlLCYE promoter and activate its expression. In addition, we also discovered that expression of SlGCR was negatively regulated by the master regulator SlRIN, thereby inhibiting lutein synthesis during tomato fruit ripening. Taken together, we identified SlGCR as a novel regulator involved in tomato lutein biosynthesis, elucidated the regulatory mechanism, and provided a potential tool for tomato lutein metabolic engineering. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-022-00088-z.

3.
Plant Cell Environ ; 43(11): 2699-2711, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32816352

RESUMEN

Abscisic acid (ABA) signaling is a vital plant signaling pathway for plant responses to stress conditions. ABA treatment can alter global gene expression patterns and cause significant phenotypic changes. We investigated the responses to ABA treatment during flowering in Arabidopsis thaliana. Dipping the flowers of CARK3 T-DNA mutants in ABA solution, led to less reduction of pollen fertility than in the wild type plants (Col-0). We demonstrated that PMEIL, a gene located downstream of CARK3, directly affects pollen fertility. Due to the close arrangement of CARK3 and PMEIL, CARK3 expression represses transcription of PMEIL in an ABA-dependent manner through transcriptional interference. Our study uncovers a molecular mechanism underlying ABA-mediated pollen sterility and provides an example of how transcriptional interference caused by close arrangement of genes may mediate stress responses during plant reproduction.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Reguladores del Crecimiento de las Plantas/fisiología , Infertilidad Vegetal/genética , Polen/genética , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Orden Génico/genética , Orden Génico/fisiología , Germinación , Péptidos y Proteínas de Señalización Intracelular/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Infertilidad Vegetal/fisiología , Polen/fisiología , Proteínas Serina-Treonina Quinasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA