Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 91(1): 145-157, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28346710

RESUMEN

Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiamina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tiamina Pirofosfato/metabolismo
2.
Nutr Cancer ; 69(2): 299-306, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28094560

RESUMEN

INTRODUCTION: Freeze-dried black raspberries (BRBs) elicit chemopreventive effects against colorectal cancer in humans and in rodents. The objective of this study was to investigate potential BRB-caused metabolite changes using wild-type (WT) C57BL/6 mice. METHODS AND RESULTS: WT mice were fed either control diet or control diet supplemented with 5% BRBs for 8 wk. A nontargeted metabolomic analysis was conducted on colonic mucosa, liver, and fecal specimens collected from both diet groups. BRBs significantly changed the levels of 41 colonic mucosa metabolites, 40 liver metabolites, and 34 fecal metabolites compared to control diet-fed mice. BRBs reduced 34 lipid metabolites in colonic mucosa and increased levels of amino acids in liver. One metabolite, 3-[3-(sulfooxy) phenyl] propanoic acid, might be a useful biomarker of BRB consumption. In addition, BRB powder was found to contain 30-fold higher levels of linolenate compared to control diets. Consistently, multiple omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including stearidonate, docosapentaenoate (ω-3 DPA), eicosapentaenoate (EPA), and docosahexaenoate (DHA), were significantly elevated in livers of BRB-fed mice. CONCLUSION: The data from the current study suggest that BRBs produce systemic metabolite changes in multiple tissue matrices, supporting our hypothesis that BRBs may serve as both a chemopreventive agent and a beneficial dietary supplement.


Asunto(s)
Aminoácidos/metabolismo , Anticarcinógenos/farmacología , Colon/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Rubus , Animales , Benzoatos/metabolismo , Suplementos Dietéticos , Ácidos Grasos Omega-3/metabolismo , Heces , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL
3.
Carcinogenesis ; 38(1): 86-93, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27866157

RESUMEN

We previously showed that black raspberries (BRBs) have beneficial effects in human colorectal cancer and a mouse model of colorectal cancer (ApcMin/+). The current study investigated the role of free fatty acid receptor 2 (FFAR2) in colon carcinogenesis and whether the FFAR2 signaling pathway contributes to BRB-mediated chemoprevention in mice. FFAR2 (also named GPR43) is a member of the G-protein-coupled receptor family that is expressed in leukocytes and colon. ApcMin/+ and ApcMin/+-FFAR2-/- mice were given a control diet or the control diet supplemented with 5% BRBs for 8 weeks. FFAR2 deficiency promoted colonic polyp development, with 100% incidence and increased polyp number and size. The ApcMin/+ mice developed colonic tubular adenoma, whereas the ApcMin/+-FFAR2-/- mice developed colonic tubular adenoma with high-grade dysplasia. FFAR2 deficiency also enhanced the cAMP-PKA-CREB-HDAC pathway, downstream of FFAR2 signaling, and increased activation of the Wnt pathway, and raised the percentage of GR-1+ neutrophils in colonic lamina propria (LP) and increased infiltration of GR-1+ neutrophils into colonic polyps. BRBs suppressed colonic polyp development and inhibited the cAMP-PKA-CREB-HDAC and Wnt pathways in the ApcMin/+ mice but not the ApcMin/+-FFAR2-/- mice. They also increased the percentage of GR-1+ neutrophils and cytokine secretion in colonic LP and decreased the infiltration of GR-1+ neutrophils and IL-1ß expression in colon polyps of ApcMin/+ mice but not ApcMin/+-FFAR2-/- mice. These results suggest that loss of FFAR2 drives colon tumorigenesis and that BRBs require functional FFAR2 to be chemopreventive. BRBs have the potential to modulate the host immune system, thereby enhancing the antitumor immune microenvironment.


Asunto(s)
Adenoma/patología , Anticarcinógenos/farmacología , Colon/patología , Neoplasias del Colon/patología , Genes APC/fisiología , Receptores Acoplados a Proteínas G/fisiología , Rubus/química , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenoma/tratamiento farmacológico , Adenoma/metabolismo , Animales , Carcinogénesis , Colon/efectos de los fármacos , Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Modelos Animales de Enfermedad , Femenino , Frutas/química , Humanos , Masculino , Ratones , Extractos Vegetales/farmacología
4.
Carcinogenesis ; 36(10): 1245-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246425

RESUMEN

Freeze-dried black raspberries (BRBs) have demonstrated chemopreventive effects in a dietary intervention trial with human colorectal cancer patients. The aim of this study was to investigate BRB-caused metabolite changes using the Apc(Min/+) mouse as a model of human colorectal cancer. Wild-type (WT) mice were fed control diet, and Apc(Min/+) mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. Colonic and intestinal polyp size and number were measured. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver and fecal specimens. Eight weeks of BRB treatment significantly decreased intestinal and colonic polyp number and size in Apc(Min/+) mice. The apc gene mutation significantly changed 52 metabolites in colonic mucosa associated with increased amino acid and decreased lipid metabolites, as well as 39 liver and 8 fecal metabolites. BRBs significantly reversed 23 apc-regulated metabolites, including 13 colonic mucosa, 8 liver and 2 fecal metabolites that were involved in amino acid, glutathione, lipid and nucleotide metabolism. Of these, changes in eight metabolites were linearly correlated with decreased colonic polyp number and size in BRB-treated Apc(Min/+) mice. Elevated levels of putrescine and linolenate in Apc(Min/+) mice were significantly decreased by BRBs. Ornithine decarboxylase expression, the key enzyme in putrescine generation, was fully suppressed by BRBs. These results suggest that BRBs produced beneficial effects against colonic adenoma development in Apc(Min/+) mice and modulated multiple metabolic pathways. The metabolite changes produced by BRBs might potentially reflect the BRB-mediated chemopreventive effects in colorectal cancer patients.


Asunto(s)
Adenoma/dietoterapia , Proteína de la Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/dietoterapia , Frutas , Rubus , Adenoma/metabolismo , Adenoma/patología , Animales , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mucosa Intestinal/efectos de los fármacos , Ratones , Ratones Transgénicos , Putrescina/biosíntesis , Ácido alfa-Linolénico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA