Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 48(22): 5993-6002, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114205

RESUMEN

Vascular dementia(VD) is a condition of cognitive impairment due to acute and chronic cerebral hypoperfusion. The available therapies for VD mainly focus on mitigating cerebral ischemia, improving cognitive function, and controlling mental behavior. Achievements have been made in the basic and clinical research on the treatment of VD with traditional Chinese medicine(TCM) active components, including Ginkgo leaf extract, puerarin, epimedium, tanshinone, and ginsenoside. Most of these components have anti-inflammatory, anti-apoptotic, anti-oxidant, and neuroprotective effects, and puerarin demonstrates excellent performance in mitigating cholinergic nervous system disorders and improving synaptic plasticity. Puerarin, ginkgetin, and epimedium are all flavonoids, while tanshinone is a diterpenoid. Puerariae Lobatae Radix, pungent in nature, can induce clear Yang to reach the cerebral orifices and has the wind medicine functions of ascending, dispersing, moving, and scurrying. Puerariae Lobatae Radix entering collaterals will dredge blood vessels to promote blood flow, and that entering the sweat pore will open the mind, which is in line with the TCM pathogenesis characteristics of VD. This study reviews the progress in the mechanism of puerarin, the main active component of Puerariae Lobatae Radix, in treating VD. Puerarin can ameliorate cholinergic nervous system disorders, reduce excitotoxicity, anti-inflammation, inhibit apoptosis, alleviate oxidative stress injury, enhance synaptic plasticity, up-regulate neuroprotective factor expression, promote cerebral circulation metabolism, and mitigate Aß injury. The pathways of action include activating nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE), vascular endothelial growth factor(VEGF), extracellular regulated protein kinases(ERK), phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt), Janus-activating kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3), AMP-activated protein kinase(AMPK), as well as inhibiting the tumor necrosis factor α(TNF-α), transient receptor potential melastatin 2(TRPM2)/N-methyl-D-aspartate receptor(NMDAR), p38 mitogen-activated protein kinase(p38 MAPK), Toll-like receptor 4(TLR4)/nuclear factor-kappaB(NF-κB), early growth response 1(Egr-1), and matrix metalloproteinase 9(MMP-9). By reviewing the papers about the treatment of VD by puerarin published by CNKI, Wanfang, VIP, PubMed, and Web of Science in the last 10 years, this study aims to support the treatment and drug development for VD.


Asunto(s)
Isquemia Encefálica , Demencia Vascular , Humanos , Demencia Vascular/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular , FN-kappa B/metabolismo , Antioxidantes , Colinérgicos
2.
Life Sci ; 333: 122134, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37778415

RESUMEN

AIM: Xiongdanjiuxin pill (XP) is a traditional Chinese medicine formula for the prevention and treatment of hyperlipidemia (HLP) and related complications. In this study, the gut-liver axis was used as the breakthrough point to analyze the therapeutic effect and potential mechanism of XP on HLP model rats and related complications. MAIN METHODS: We used high-fat diet (HFD) to establish the HLP model of rats and treated them with XP. The 16S rRNA sequencing method was used to explore the effect of XP on the gut microbiota of HFD rats, and the effects of XP on ileum pathology, intestinal barrier and circulatory inflammation in HFD rats were also investigated. We further explored the molecular mechanism of XP treating liver inflammation in rats with HFD by regulating toll-like receptor 4 (TLR4) signaling. KEY FINDINGS: We found that XP could regulate the imbalance of gut microbiota in HFD rats, and up-regulate the expression of tight junction protein in intestinal epithelium of HFD rats, thereby improving the intestinal barrier damage and intestinal inflammatory response. In addition, XP could significantly reduce the levels of inflammatory cytokines in HFD rats, and inhibit TLR4 signaling pathway, thereby reducing liver inflammation in HFD rats. SIGNIFICANCE: XP can effectively improve the imbalance of gut-liver axis in hyperlipidemic rats and alleviate the inflammatory damage of liver. Its mechanism may be related to regulating the disorder of gut microbiota and inhibiting TLR4 signal pathway, so as to achieve the therapeutic effect on hyperlipidemic fatty liver in rats.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Toll-Like 4/metabolismo , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S/metabolismo , Hígado/metabolismo , Inflamación/metabolismo
3.
BMC Complement Med Ther ; 23(1): 44, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765346

RESUMEN

BACKGROUND: Chinese medicine usually acts as "multi-ingredients, multi-targets and multi-pathways" on complex diseases, and these action modes reflect the coordination and integrity of the treatment process with traditional Chinese medicine (TCM). System pharmacology is developed based on the cross-disciplines of directional pharmacology, system biology, and mathematics, has the characteristics of integrity and synergy in the treatment process of TCM. Therefore, it is suitable for analyzing the key ingredients and mechanisms of TCM in treating complex diseases. Intracerebral Hemorrhage (ICH) is one of the leading causes of death in China, with the characteristics of high mortality and disability rate. Bring a significant burden on people and society. An increasing number of studies have shown that Chinese medicine prescriptions have good advantages in the treatment of ICH, and Ditan Decoction (DTT) is one of the commonly used prescriptions in the treatment of ICH. Modern pharmacological studies have shown that DTT may play a therapeutic role in treating ICH by inhibiting brain inflammation, abnormal oxidative stress reaction and reducing neurological damage, but the specific key ingredients and mechanism are still unclear. METHODS: To solve this problem, we established PPI network based on the latest pathogenic gene data of ICH, and CT network based on ingredient and target data of DTT. Subsequently, we established optimization space based on PPI network and CT network, and constructed a new model for node importance calculation, and proposed a calculation method for PES score, thus calculating the functional core ingredients group (FCIG). These core functional groups may represent DTT therapy for ICH. RESULTS: Based on the strategy, 44 ingredients were predicted as FCIG, results showed that 80.44% of the FCIG targets enriched pathways were coincided with the enriched pathways of pathogenic genes. Both the literature and molecular docking results confirm the therapeutic effect of FCIG on ICH via targeting MAPK signaling pathway and PI3K-Akt signaling pathway. CONCLUSIONS: The FCIG obtained by our network pharmacology method can represent the effect of DTT in treating ICH. These results confirmed that our strategy of active ingredient group optimization and the mechanism inference could provide methodological reference for optimization and secondary development of TCM.


Asunto(s)
Farmacología en Red , Fosfatidilinositol 3-Quinasas , Humanos , Simulación del Acoplamiento Molecular , Medicina Tradicional China , Hemorragia Cerebral/tratamiento farmacológico
4.
Drug Des Devel Ther ; 16: 3991-4011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420429

RESUMEN

Objective: Longdan Xiegan Decoction (LXD) is a famous herbal formula in China. It has been proved that LXD has been shown to have a significant inhibitory effect on suppresses the inflammatory cells associated with uveitis. However, the key functional combination of component groups and their possible mechanisms remain unclear. Methods: The community detecting model of the network, the functional response space, and reverse prediction model were utilized to decode the key components group (KCG) and possible mechanism of LXD in treating uveitis. Finally, MTT assay, NO assay and ELISA assay were applied to verify the effectiveness of KCG and the accuracy of our strategy. Results: In the components-targets-pathogenic genes-disease (CTP) network, a combination of Huffman coding and random walk algorithm was used and eight foundational acting communities (FACs) were discovered with important functional significance. Verification has shown that FACs can represent the corresponding C-T network for treating uveitis. A novel node importance calculation method was designed to construct the functional response space and pick out 349 effective proteins. A total of 54 components were screened and defined as KCG. The pathway enrichment results showed that KCG and their targets enriched signal pathways of IL-17, Toll-like receptor, and T cell receptor played an important role in the pathogenesis of uveitis. Furthermore, experimental verification results showed that important KCG quercetin and sitosterol markedly inhibited the production of nitric oxide and significantly regulated the level of TNF-α and IFN-γ in Lipopolysaccharide-induced RAW264.7 cells. Discussion: In this research, we decoded the potential mechanism of the multi-components-genes-pathways of LXD's pharmacological action mode against uveitis based on an integrated pharmacology approach. The results provided a new perspective for the future studies of the anti-uveitis mechanism of traditional Chinese medicine.


Asunto(s)
Medicamentos Herbarios Chinos , Uveítis , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Uveítis/metabolismo , Transducción de Señal , Medicina Tradicional China
5.
Front Cell Dev Biol ; 10: 753425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646921

RESUMEN

Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.

6.
BMC Complement Med Ther ; 22(1): 103, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413898

RESUMEN

BACKGROUND: Chinese herbal medicine (CHM) is characterized by "multi- compounds, multi-targets and multi-pathway", which has advanced benefits for preventing and treating complex diseases, but there still exists unsolved issues, mainly include unclear material basis and underlying mechanism of prescription. Integrated pharmacology is a hot cross research area based on system biology, mathematics and poly-pharmacology. It can systematically and comprehensively investigate the therapeutic reaction of compounds or drugs on pathogenic genes network, and is especially suitable for the study of complex CHM systems. Intracerebral Hemorrhage (ICH) is one of the main causes of death among Chinese residents, which is characterized with high mortality and high disability rate. In recent years, the treatment of ICH by CHM has been deeply researched. Xue Fu Zhu Yu Decoction (XFZYD), one of the commonly used prescriptions in treating ICH at clinic level, has not been clear about its mechanism. METHODS: Here, we established a strategy, which based on compounds-targets, pathogenetic genes, network analysis and node importance calculation. Using this strategy, the core compounds group (CCG) of XFZYD was predicted and validated by in vitro experiments. The molecular mechanism of XFZYD in treating ICH was deduced based on CCG and their targets. RESULTS: The results show that the CCG with 43 compounds predicted by this model is highly consistent with the corresponding Compound-Target (C-T) network in terms of gene coverage, enriched pathway coverage and accumulated contribution of key nodes at 89.49%, 88.72% and 90.11%, respectively, which confirmed the reliability and accuracy of the effective compound group optimization and mechanism speculation strategy proposed by us. CONCLUSIONS: Our strategy of optimizing the effective compound groups and inferring the mechanism provides a strategic reference for explaining the optimization and inferring the molecular mechanism of prescriptions in treating complex diseases of CHM.


Asunto(s)
Medicamentos Herbarios Chinos , Hemorragia Cerebral/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China/métodos , Reproducibilidad de los Resultados
7.
Front Pharmacol ; 13: 784242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355727

RESUMEN

Background: Traditional Chinese medicine (TCM) has been widely used in the treatment of human diseases. However, the synergistic effects of multiple TCM prescriptions in the treatment of stroke have not been thoroughly studied. Objective of the study: This study aimed to reveal the mechanisms underlying the synergistic effects of these TCM prescriptions in stroke treatment and identify the active compounds. Methods: Herbs and compounds in the Di-Tan Decoction (DTD), Xue-Fu Zhu-Yu Decoction (XFZYD), and Xiao-Xu-Ming Decoction (XXMD) were acquired from the TCMSP database. SEA, HitPick, and TargetNet web servers were used for target prediction. The compound-target (C-T) networks of three prescriptions were constructed and then filtered using the collaborative filtering algorithm. We combined KEGG enrichment analysis, molecular docking, and network analysis approaches to identify active compounds, followed by verification of these compounds with an oxygen-glucose deprivation and reoxygenation (OGD/R) model. Results: The filtered DTD network contained 39 compounds and 534 targets, the filtered XFZYD network contained 40 compounds and 508 targets, and the filtered XXMD network contained 55 compounds and 599 targets. The filtered C-T networks retained approximately 80% of the biological functions of the original networks. Based on the enriched pathways, molecular docking, and network analysis results, we constructed a complex network containing 3 prescriptions, 14 botanical drugs, 26 compounds, 13 targets, and 5 pathways. By calculating the synergy score, we identified the top 5 candidate compounds. The experimental results showed that quercetin, baicalin, and ginsenoside Rg1 independently and synergistically increased cell viability. Conclusion: By integrating pharmacological and chemoinformatic approaches, our study provides a new method for identifying the effective synergistic compounds of TCM prescriptions. The filtered compounds and their synergistic effects on stroke require further research.

8.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6438-6449, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604890

RESUMEN

Colquhounia Root Tablets, prepared from Tripterygium, is effective for rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy. However, the adverse reactions, such as liver injury, nausea, and vomiting, limit its application. This study aims to evaluate the advantages and risk of Colquhounia Root Tablets and its key active components in the treatment of rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy and explore the potential mechanism in treating different diseases based on in vitro efficacy and toxicity assessment and biomolecular network analysis. First, the components of Colquhounia Root Tablets absorbed in blood were detected via ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry, and the influence of Colquhounia Root Tablets and its key components triptolide and celastrol on viability of human hepatocyte L02, human rheumatoid fibroblast-like synovial cell MH7 A, human renal tubular epithelial cell HK-2, and mouse podocyte MPC-5 was detected by cell counting kit 8(CCK8) assay. Then the expression of inflammatory cytokines of MH7 A and HK-2 cells was detected by enzyme-linked immunosorbent assay(ELISA). Moreover, the expression of nephrin and podocin in MPC-5 cells was measured by Western blot, and the expression of cytoskeletal protein by immunofluorence assay. Candidate targets of components from Colquhounia Root Tablets absorbed in blood were retrieved from TCMIP v2.0, and targets of the three diseases from GEO. The "disease-related genes-drug targets" network was constructed based on STRING, followed by pathway enrichment. Finally, molecular docking was performed by AutoDock Vina to explore the binding affinity of triptolide and celastrol with putative targets in the key signaling pathway. RESULTS:: showed that Colquhounia Root Tablets, triptolide, and celastrol can obviously reduce the levels of inflammatory cytokines in supernatant of MH7 A and HK-2 cells and enhance the expression of nephrin and podocin in MPC-5 cells. In addition, triptolide had the strongest toxicity to L02 cells, while Huobahuagen Tablets had the least toxicity to hepatocytes. Network analysis revealed that Colquhounia Root Tablets may intervene the three diseases through PI3 K/HIF1α/NOS signaling pathway. Both triptolide and celastrol had high binding affinities to corresponding targets in this signaling pathway. In conclusion, Colquhounia Root Tablets exerts similar effects on rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy to triptolide and celastrol, but the toxicity was lower. PI3 K/HIF1α/NOS signaling pathway may be the common pathway of Colquhounia Root Tablets in the treatment of the three diseases.


Asunto(s)
Artritis Reumatoide , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Glomerulonefritis Membranosa , Humanos , Animales , Ratones , Simulación del Acoplamiento Molecular , Citocinas , Artritis Reumatoide/tratamiento farmacológico , Comprimidos , Medicamentos Herbarios Chinos/uso terapéutico
9.
Front Pharmacol ; 12: 769190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938184

RESUMEN

Sepsis is a systemic inflammatory reaction caused by various infectious or noninfectious factors, which can lead to shock, multiple organ dysfunction syndrome, and death. It is one of the common complications and a main cause of death in critically ill patients. At present, the treatments of sepsis are mainly focused on the controlling of inflammatory response and reduction of various organ function damage, including anti-infection, hormones, mechanical ventilation, nutritional support, and traditional Chinese medicine (TCM). Among them, Xuebijing injection (XBJI) is an important derivative of TCM, which is widely used in clinical research. However, the molecular mechanism of XBJI on sepsis is still not clear. The mechanism of treatment of "bacteria, poison and inflammation" and the effects of multi-ingredient, multi-target, and multi-pathway have still not been clarified. For solving this issue, we designed a new systems pharmacology strategy which combines target genes of XBJI and the pathogenetic genes of sepsis to construct functional response space (FRS). The key response proteins in the FRS were determined by using a novel node importance calculation method and were condensed by a dynamic programming strategy to conduct the critical functional ingredients group (CFIG). The results showed that enriched pathways of key response proteins selected from FRS could cover 95.83% of the enriched pathways of reference targets, which were defined as the intersections of ingredient targets and pathogenetic genes. The targets of the optimized CFIG with 60 ingredients could be enriched into 182 pathways which covered 81.58% of 152 pathways of 1,606 pathogenetic genes. The prediction of CFIG targets showed that the CFIG of XBJI could affect sepsis synergistically through genes such as TAK1, TNF-α, IL-1ß, and MEK1 in the pathways of MAPK, NF-κB, PI3K-AKT, Toll-like receptor, and tumor necrosis factor signaling. Finally, the effects of apigenin, baicalein, and luteolin were evaluated by in vitro experiments and were proved to be effective in reducing the production of intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW264.7 cells, significantly. These results indicate that the novel integrative model can promote reliability and accuracy on depicting the CFIGs in XBJI and figure out a methodological coordinate for simplicity, mechanism analysis, and secondary development of formulas in TCM.

10.
Phytomedicine ; 93: 153781, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34649212

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers worldwide. The invasion and metastasis characteristics of HCC dramatically affect the prognosis and survival of HCC patients. Compound Kushen Injection (CKI) is a GMP produced, proverbially applied traditional Chinese medicine formula in China to treat cancer-associated pains, and used as an adjunctive therapy for HCC. Until so far, whether CKI could suppress the metastasis of HCC through regulation of epithelial-mesenchymal transition or metabolic reprogramming is still ambiguous. PURPOSE: In this study, the anti-metastasis effects of CKI were clarified and its pharmacological mechanisms were systematically explored. METHODS: Cell invasion and cell adhesion assay were performed in SMMC-7721 cells to assess the anti-metastasis role of CKI, and the histopathological evaluation and biochemical detection were utilized in DEN-induced HCC rats to verify the anti-HCC effect of CKI. Serum and liver samples were analyzed with 1H NMR metabolomics approach to screen the differential metabolites and further target quantification the content of key metabolites. Finally, western blotting and immunofluorescence assay were applied to verify the crucial signaling pathway involved in metabolites. RESULTS: CKI markedly repressed the invasion and adhesion in SMMC-7721 cells and significantly improved the liver function of DEN-induced HCC rats. CKI significantly regulated the expression of epithelial-mesenchymal transition (EMT) markers (Vimentin and E-cadherin). Metabolomics results showed that CKI regulated the metabolic reprogramming of HCC by inhibiting the key metabolites (citrate and lactate) and enzymes (HK and PK) in glycolysis process. Importantly, we found that c-Myc mediates the inhibitory effect of CKI on glycolysis. We further demonstrated that CKI inhibits c-Myc expression through modulating Wnt/ß-catenin pathway in SMMC-7721 cells and DEN-induced HCC rats. Furthermore, through activating Wnt/ß-catenin pathway with LiCl, the inhibitory effects of CKI on HCC were diminished. CONCLUSION: Together, this study reveals that CKI intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating ß-catenin/c-Myc signaling pathway. Our research provides a new understanding of the mechanism of CKI against invasion and metastasis of HCC from the perspective of metabolic reprogramming.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Medicamentos Herbarios Chinos , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratas , Vía de Señalización Wnt , beta Catenina/metabolismo
11.
J Ethnopharmacol ; 274: 114043, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33753143

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Compound Kushen Injection (CKI) is a widely used TCM formula for treatment of carcinomatous pain and tumors of digestive system including hepatocellular carcinoma (HCC). However, the potential mechanisms of CKI for treatment of HCC have not been systematically and deeply studied. AIM OF STUDY: A metabolic data-driven systems pharmacology approach was utilized to investigate the potential mechanisms of CKI for treatment of HCC. MATERIALS AND METHODS: Based on phenotypic data generated by metabolomics and genotypic data of drug targets, a propagation model based on Dijkstra program was proposed to decode the effective network of key genotype-phenotype of CKI in treating HCC. The pivotal pathway was predicted by target propagation mode of our proposed model, and was validated in SMMC-7721 cells and diethylnitrosamine-induced rats. RESULTS: Metabolomics results indicated that 12 differential metabolites, and 5 metabolic pathways might be involved in the anti-HCC effect of CKI. A total of 86 metabolic related genes that affected by CKI were obtained. The results calculated by propagation model showed that 6475 shortest distance chains might be involved in the anti-HCC effect of CKI. According to the results of propagation mode, EGFR was identified as the core target of CKI for the anti-HCC effect. Finally, EGFR and its related pathway EGFR-STAT3 signaling pathway were validated in vivo and in vitro. CONCLUSION: The proposed method provides a methodological reference for explaining the underlying mechanism of TCM in treating HCC.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Receptores ErbB/metabolismo , Genotipo , Humanos , Inyecciones , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica , Farmacología/métodos , Fenotipo , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Biología de Sistemas
12.
RSC Adv ; 11(42): 26016-26028, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35479475

RESUMEN

Buddleja lindleyana Fort., a traditional Chinese medicine, has demonstrated anti-inflammatory, immunomodulatory, antidementia, neuroprotective, antibacterial, and antioxidant effects. Its flowers, leaves, and roots have been used as traditional Chinese medicines. A simple and rapid high-performance liquid chromatography method coupled with mass spectrometry (HPLC-MS/MS) was applied in the multicomponent determination of Buddleja lindleyana Fort., and the discrepancies in the contents from ten different habitats were analyzed. The present study simultaneously determined the concentrations of seven chemical compounds of Buddleja lindleyana Fort. extract in rat plasma via HPLC-MS/MS, which was applied in the pharmacokinetic (PK) study of Buddleja lindleyana Fort. A C18 column was used for chromatographic separation, and ion acquisition was achieved by multiple-reaction monitoring (MRM) in negative ionization mode. The optimized mass transition ion-pairs (m/z) for quantization were 591.5/282.8 for linarin, 609.4/300.2 for rutin, 284.9/133.0 for luteolin, 300.6/151.0 for quercetin, 268.8/116.9 for apigenin, 283.0/267.9 for acacetin, 623.3/160.7 for acteoside, and 252.2/155.8 for sulfamethoxazole (IS). A double peak appeared in the drug-time curve of apigenin, which was associated with entero-hepatic recirculation. There were discrepancies in the contents of seven chemical compounds from 10 batches of Buddleja lindleyana Fort., which were associated with the growth environments. Herein, the pharmacokinetic parameters of seven analytes in Buddleja lindleyana Fort. extract are summarized. The maximum plasma concentration (C max) of linarin, rutin, luteolin, quercetin, apigenin, acacetin and acteoside were 894.12 ± 9.34 ng mL-1, 130.76 ± 18.33 ng mL-1, 77.37 ± 25.72 ng mL-1, 20.15 ± 24.85 ng mL-1, 146.42 ± 14.88 ng mL-1, 31.92 ± 17.58 ng mL-1, and 649.78 ± 16.42 ng mL-1, respectively. The time to reach C max for linarin, rutin, luteolin, quercetin, apigenin, acacetin, and acteoside were 10, 5, 5, 5, 180, 10 and 10 min, respectively. This is the first report on the simultaneous determination of seven active components for 10 different growing environments and the pharmacokinetic studies of seven active components in rat plasma after the oral administration of Buddleja lindleyana Fort. extract. This study lays the foundation for a better understanding of the absorption mechanism of Buddleja lindleyana Fort., and the evaluation of its clinical application.

13.
Front Pharmacol ; 11: 512877, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117150

RESUMEN

Complex disease is a cascade process which is associated with functional abnormalities in multiple proteins and protein-protein interaction (PPI) networks. One drug one target has not been able to perfectly intervene complex diseases. Increasing evidences show that Chinese herb formula usually treats complex diseases in the form of multi-components and multi-targets. The key step to elucidate the underlying mechanism of formula in traditional Chinese medicine (TCM) is to optimize and capture the important components in the formula. At present, there are several formula optimization models based on network pharmacology has been proposed. Most of these models focus on the 2D/3D similarity of chemical structure of drug components and ignore the functional optimization space based on relationship between pathogenetic genes and drug targets. How to select the key group of effective components (KGEC) from the formula of TCM based on the optimal space which link pathogenic genes and drug targets is a bottleneck problem in network pharmacology. To address this issue, we designed a novel network pharmacological model, which takes Lang Chuang Wan (LCW) treatment of systemic lupus erythematosus (SLE) as the case. We used the weighted gene regulatory network and active components targets network to construct disease-targets-components network, after filtering through the network attribute degree, the optimization space and effective proteins were obtained. And then the KGEC was selected by using contribution index (CI) model based on knapsack algorithm. The results show that the enriched pathways of effective proteins we selected can cover 96% of the pathogenetic genes enriched pathways. After reverse analysis of effective proteins and optimization with CI index model, KGEC with 82 components were obtained, and 105 enriched pathways of KGEC targets were consistent with enriched pathways of pathogenic genes (80.15%). Finally, the key components in KGEC of LCW were evaluated by in vitro experiments. These results indicate that the proposed model with good accuracy in screening the KGEC in the formula of TCM, which provides reference for the optimization and mechanism analysis of the formula in TCM.

14.
Front Pharmacol ; 11: 1035, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754034

RESUMEN

Traditional Chinese medicine (TCM) with the characteristics of "multi-component-multi-target-multi-pathway" has obvious advantages in the prevention and treatment of complex diseases, especially in the aspects of "treating the same disease with different treatments". However, there are still some problems such as unclear substance basis and molecular mechanism of the effectiveness of formula. Network pharmacology is a new strategy based on system biology and poly-pharmacology, which could observe the intervention of drugs on disease networks at systematical and comprehensive level, and especially suitable for study of complex TCM systems. Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, causing articular and extra articular dysfunctions among patients, it could lead to irreversible joint damage or disability if left untreated. TCM formulas, Danggui-Sini-decoction (DSD), Guizhi-Fuzi-decoction (GFD), and Huangqi-Guizhi-Wuwu-Decoction (HGWD), et al., have been found successful in controlling RA in clinical applications. Here, a network pharmacology-based approach was established. With this model, key gene network motif with significant (KNMS) of three formulas were predicted, and the molecular mechanism of different formula in the treatment of rheumatoid arthritis (RA) was inferred based on these KNMSs. The results show that the KNMSs predicted by the model kept a high consistency with the corresponding C-T network in coverage of RA pathogenic genes, coverage of functional pathways and cumulative contribution of key nodes, which confirmed the reliability and accuracy of our proposed KNMS prediction strategy. All validated KNMSs of each RA therapy-related formula were employed to decode the mechanisms of different formulas treat the same disease. Finally, the key components in KNMSs of each formula were evaluated by in vitro experiments. Our proposed KNMS prediction and validation strategy provides methodological reference for interpreting the optimization of core components group and inference of molecular mechanism of formula in the treatment of complex diseases in TCM.

15.
Front Pharmacol ; 11: 567088, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424585

RESUMEN

Traditional Chinese medicine (TCM) formulas treat complex diseases through combined botanical drugs which follow specific compatibility rules to reduce toxicity and increase efficiency. "Jun, Chen, Zuo and Shi" is one of most used compatibility rules in the combination of botanical drugs. However, due to the deficiency of traditional research methods, the quantified theoretical basis of herbal compatibility including principles of "Jun, Chen, Zuo and Shi" are still unclear. Network pharmacology is a new strategy based on system biology and multi-disciplines, which can systematically and comprehensively observe the intervention of drugs on disease networks, and is especially suitable for the research of TCM in the treatment of complex diseases. In this study, we systematically decoded the "Jun, Chen, Zuo and Shi" rules of Huanglian Jiedu Decoction (HJD) in the treatment of diseases for the first time. This interpretation method considered three levels of data. The data in the first level mainly depicts the characteristics of each component in single botanical drug of HJD, include the physical and chemical properties of component, ADME properties and functional enrichment analysis of component targets. The second level data is the characterization of component-target-protein (C-T-P) network in the whole protein-protein interaction (PPI) network, mainly include the characterization of degree and key communities in C-T-P network. The third level data is the characterization of intervention propagation properties of HJD in the treatment of different complex diseases, mainly include target coverage of pathogenic genes and propagation coefficient of intervention effect between target proteins and pathogenic genes. Finally, our method was validated by metabolic data, which could be used to detect the components absorbed into blood. This research shows the scientific basis of "Jun-Chen-Zuo-Shi" from a multi-dimensional perspective, and provides a good methodological reference for the subsequent interpretation of key components and speculation mechanism of the formula.

16.
Chin J Integr Med ; 24(11): 835-843, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30090975

RESUMEN

OBJECTIVE: To investigate the neuro-protective effects of Acanthopanax senticosus Harms (EAS) on mesencephalic mitochondria and the mechanism of action, using a mouse model of Parkinson's disease (PD). METHODS: The chemical fingerprint analysis of the extract of Acanthopanax senticosus Harms (EAS) was performed using the ultra performance liquid chromatograph and time of flight mass spectrometry. Thirty mice were randomly divided into the control group, the MPTP model group, and the EAS treated group with MPTP (MPTP+EAS group, 10 in each group). The MPTP model group and the MPTP+EAS group received MPTP-HCl (30 mg/kg i.p) once a day for 5 days. The control group received an equal volume of saline (20 mL/kg i.p) once a day for 5 days. Induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride daily (MPTP-HCl, 30 mg/kg) for 5 days, the PD mice were treated with EAS at 45.5 mg/kg daily for 20 days. The behavioral testing of mice was carried out using the pole-climbing test. The integrity and functions of neurons were examined in mesencephalic mitochondria in a PD mouse model, including nicotinamide adenine dinucleotide dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), mitochondrially encoded nicotinamide adenine dinucleotide dehydrogenase 1 (MT-ND1), succinate dehydrogenase complex subunit A (SDHA), and succinate dehydrogenase cytochrome b560 subunit (SDHC). RESULTS: After treatment with EAS, the behavioral changes induced by MPTP were attenuated significantly (P<0.05). EAS protected the mesencephalic mitochondria from swelling and attenuated the decreases in their membrane potential (both P<0.05), which was supported by an ultra-structural level analysis. The changes in reactive oxygen species (ROS), malonic dialdehyde (MDA), oxidative phosphorylation (OXPHOS) system 4 subunits levels and PD-related proteins expressions (parkin, Pink1, DJ-1, α-synuclein, and Lrrk2) reverted to near normal levels (all P<0.05), based on the results of immune-histological and Western blotting observations. CONCLUSIONS: The neuro-protective effects of EAS are linked to protecting mice against MPTP-induced mitochondrial dysfunction and structural damage. Therefore, EAS is a promising candidate for the prevention or treatment of mitochondrial neurodegenerative disorders, such as PD.


Asunto(s)
Eleutherococcus , Intoxicación por MPTP/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/uso terapéutico
17.
Oncol Lett ; 15(4): 5721-5729, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29552206

RESUMEN

Doxorubicin (DOX) is a potent and broad-spectrum anthracycline chemotherapeutic agent, but dose-dependent cardiotoxic side effects limit its clinical application. This toxicity is closely associated with the generation of reactive oxygen species (ROS) radical during DOX metabolism. The present study investigated the effects of Berberine (Ber) on DOX-induced acute cardiac injury in a rat model and analysed its mechanism in cardiomyocytes in vitro. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and malondialdehyde (MDA) levels were significantly increased in the DOX group compared with the control group. This increase was accompanied by cardiac histopathological injury and a decrease in cardiomyocyte superoxide dismutase (SOD) and catalase (CAT). CK, CK-MB and MDA levels decreased and SOD and CAT levels increased in the Ber-treated group compared to the DOX group. Ber ameliorated the DOX-induced increase in cytosolic calcium concentration ([Ca2+]i), attenuated mitochondrial Ca2+ overload and restored the DOX-induced loss of mitochondrial membrane potential in vitro. These results demonstrated that Ber exhibited protective effects against DOX-induced heart tissue free radical injury, potentially via the inhibition of intracellular Ca2+ elevation and attenuation of mitochondrial dysfunction.

18.
J Proteome Res ; 17(5): 1833-1843, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29589762

RESUMEN

1H nuclear magnetic resonance (NMR)-based metabolomics can rapidly detect metabolic shift under various stimulus; thus, it facilitated the dissection of the therapeutic mechanisms of compounds. (-)-5-Hydroxy-equol is an isoflavone metabolite that be obtained by microbial biotransformation. In the current work, the effect of (-)-5-hydroxy-equol on hepatocellular carcinoma (HCC) cells and its mechanism have been explored based on 1H NMR-based metabolomics approach. Our results revealed that (-)-5-hydroxy-equol can significantly inhibit the proliferation, migration, and invasion of SMMC-7721 cells and inhibit the proliferation of HepG2 cells. Metabolomics revealed that 17 differential metabolites involving in amino acid metabolism and energy metabolism were significantly changed inside and outside of the cells after treatment of (-)-5-hydroxy-equol. Specifically, (-)-5-hydroxy-equol at a concentration of 30 µM significantly decreased the concentrations of pyruvate, glutamate, and glucose. Because glycometabolism is a crucial feature of cancer-specific metabolism, we further verified enzymes and proteins that are closely relevant to glycometabolism. Our results indicated that (-)-5-hydroxy-equol-modulated glycolysis in HCC through the inhibition of activities of hexokinase, phosphofructokinase, and pyruvate kinase, and the expression of pyruvate kinase M2. This study revealed that metabolomic analysis integrating with further verifications at the biochemical level can facilitate understanding the anti-HCC mechanisms of (-)-5-hydroxy-equol.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Equol/análogos & derivados , Equol/farmacología , Neoplasias Hepáticas/metabolismo , Metabolómica/métodos , Aminoácidos/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Equol/uso terapéutico , Glucólisis/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Fitoestrógenos/farmacología , Espectroscopía de Protones por Resonancia Magnética/métodos
19.
Sci Rep ; 8(1): 624, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330507

RESUMEN

Compound Kushen Injection (CKI) is a Traditional Chinese Medicine (TCM) preparation that has been clinically used in China to treat various types of solid tumours. Although several studies have revealed that CKI can inhibit the proliferation of hepatocellular carcinoma (HCC) cell lines, the active compounds, potential targets and pathways involved in these effects have not been systematically investigated. Here, we proposed a novel idea of "main active compound-based network pharmacology" to explore the anti-cancer mechanism of CKI. Our results showed that CKI significantly suppressed the proliferation and migration of SMMC-7721 cells. Four main active compounds of CKI (matrine, oxymatrine, sophoridine and N-methylcytisine) were confirmed by the integration of ultra-performance liquid chromatography/mass spectrometry (UPLC-MS) with cell proliferation assays. The potential targets and pathways involved in the anti-HCC effects of CKI were predicted by a network pharmacology approach, and some of the crucial proteins and pathways were further validated by western blotting and metabolomics approaches. Our results indicated that CKI exerted anti-HCC effects via the key targets MMP2, MYC, CASP3, and REG1A and the key pathways of glycometabolism and amino acid metabolism. These results provide insights into the mechanism of CKI by combining quantitative analysis of components, network pharmacology and experimental validation.


Asunto(s)
Antineoplásicos Fitogénicos/análisis , Carcinoma Hepatocelular/metabolismo , Medicamentos Herbarios Chinos/análisis , Neoplasias Hepáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/farmacología , Humanos , Litostatina/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Espectrometría de Masas , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
20.
Rejuvenation Res ; 20(6): 506-516, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28548620

RESUMEN

Baicalein is a flavonoid isolated from the roots of Scutellaria baicalensis Georgi. This study aimed to ascertain the effects and potential underlying mechanisms of baicalein in d-galactose (d-gal)-induced aging rat model by integration of behavior examination, biochemical detection, and 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Our findings suggest that baicalein significantly attenuated memory decline in d-gal-induced aging model, as manifested by increasing recognition index in novel object recognition test, shortening latency time, and increasing platform crossings in Morris water maze test. Baicalein significantly inhibited the releases of inflammatory mediators such as nitric oxide, interleukin-6, interleukin-1 beta, and tumor necrosis factor-α in d-gal-induced aging model. Metabolomic study revealed that 10 endogenous metabolites in cerebral cortex were considered as potential biomarkers of baicalein for its protective effect. Further metabolic pathway analysis showed that the metabolic alterations were associated with alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, inositol phosphate metabolism, and energy metabolism. These data indicate that baicalein improves learning and memory dysfunction in d-gal-induced aging rats. This might be achieved through attenuation of inflammation and metabolic dysfunction.


Asunto(s)
Envejecimiento/metabolismo , Flavanonas/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Envejecimiento/patología , Animales , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Análisis Discriminante , Conducta Alimentaria/efectos de los fármacos , Flavanonas/farmacología , Galactosa , Inflamación/sangre , Inflamación/patología , Mediadores de Inflamación/metabolismo , Análisis de los Mínimos Cuadrados , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica , Análisis Multivariante , Análisis de Componente Principal , Espectroscopía de Protones por Resonancia Magnética , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA