Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Fitoterapia ; 175: 105921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561052

RESUMEN

Sophoridine, which is derived from the Leguminous plant Sophora alopecuroides L., has certain pharmacological activity as a new anticancer drug. Herein, a series of novel N-substituted sophoridine derivatives was designed, synthesized and evaluated with anticancer activity. Through QSAR prediction models, it was discovered that the introduction of a benzene ring as a main pharmacophore and reintroduced into a benzene in para position on the phenyl ring in the novel sophoridine derivatives improved the anticancer activity effectively. In vitro, 28 novel compounds were evaluated for anticancer activity against four human tumor cell lines (A549, CNE-2, HepG-2, and HEC-1-B). In particular, Compound 26 exhibited remarkable inhibitory effects, with an IC50 value of 15.6 µM against HepG-2 cells, surpassing cis-Dichlorodiamineplatinum (II). Molecular docking studies verified that the derivatives exhibit stronger binding affinity with DNA topoisomerase I compared to sophoridine. In addition, 26 demonstrated significant inhibition of DNA Topoisomerase I and could arrest cells in G0/G1 phase. This study provides valuable insights into the design and synthesis of N-substituted sophoridine derivatives with anticancer activity.


Asunto(s)
Alcaloides , Matrinas , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Quinolizinas , Sophora , Inhibidores de Topoisomerasa I , Humanos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/síntesis química , Quinolizinas/farmacología , Quinolizinas/síntesis química , Quinolizinas/química , Estructura Molecular , Sophora/química , Alcaloides/farmacología , Alcaloides/síntesis química , Alcaloides/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/síntesis química , Indolizinas/farmacología , Indolizinas/química , Indolizinas/síntesis química , ADN-Topoisomerasas de Tipo I/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/síntesis química
2.
Fitoterapia ; 175: 105935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580032

RESUMEN

Buyang Huanwu Decoction (BHD) has been effective in treating ischemic stroke (IS). However, its mechanism of action remains unclear. The study intended to explore the potential mechanism of BHD against IS using systems pharmacology, proteomics, and animal experiments. The active components of BHD were identified from UPLC-Q-TOF-MS and literature mining. Systems pharmacology and proteomics were employed to investigate the underlying mechanism of BHD against IS. The AutoDock tool was used for molecular docking. A middle cerebral artery occlusion (MCAO) model rat was utilized to explore the therapeutic benefits of BHD. The rats were divided into sham, model, BHD (5, 10, 20 g/kg, ig) groups. The neurological scores, pathological section characteristics, brain infarct volumes, inflammatory cytokines, and signaling pathways were investigated in vivo experiments. The results of systems pharmacology showed that 13 active compounds and 112 common targets were screened in BHD. The docking results suggested that the active compounds in BHD had a high affinity for the key targets. In vivo experiments demonstrated that BHD exhibited neuroprotective benefits by lowering the neurological score, the volume of the cerebral infarct, the release of inflammatory cytokines, and reducing neuroinflammatory damage in MCAO rats. Furthermore, BHD decreased TNF-α and CD38 levels while increasing ATP2B2, PDE1A, CaMK4, p-PI3K, and p-AKT. Combined with systems pharmacology and proteomic studies, we confirmed that PI3K-Akt and calcium signaling pathways are the key mechanisms for BHD against IS. Furthermore, this study demonstrated the feasibility of combining proteomics with systems pharmacology to study the mechanism of herbal medicine.


Asunto(s)
Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico , Simulación del Acoplamiento Molecular , Farmacología en Red , Fármacos Neuroprotectores , Proteómica , Ratas Sprague-Dawley , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratas , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Masculino , Fármacos Neuroprotectores/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Citocinas/metabolismo
3.
Biomed Pharmacother ; 174: 116586, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626516

RESUMEN

Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.


Asunto(s)
Liposomas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Fototerapia/métodos , Terapia Fototérmica/métodos
4.
Biomed Pharmacother ; 165: 115266, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37541177

RESUMEN

Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization. In recent years, there has been extensive evaluation of the efficacy of orally administered herbal medicinal products and their extracts as a means of treating IBD. Consequently, substantial evidence has emerged, supporting their effectiveness in IBD treatment. This review aimed to provide a comprehensive summary of recent studies evaluating the effects of herbal medicinal products in the treatment of IBD. We delved into the regulatory role of these products in modulating immunity and maintaining the integrity of the intestinal epithelial barrier. Additionally, we examined their impact on antioxidant activity, anti-inflammatory properties, and the modulation of intestinal flora. By exploring these aspects, we aimed to emphasize the significant advantages associated with the use of oral herbal medicinal products in the treatment of IBD. Of particular note, this review introduced the concept of herbal plant-derived exosome-like nanoparticles (PDENs) as the active ingredient in herbal medicinal products for the treatment of IBD. The inclusion of PDENs offers distinct advantages, including enhanced tissue penetration and improved physical and chemical stability. These unique attributes not only demonstrate the potential of PDENs but also pave the way for the modernization of herbal medicinal products in IBD treatment.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Plantas Medicinales , Humanos , Fitoterapia , Medicina de Hierbas , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico
5.
Pharm Biol ; 61(1): 1014-1029, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37410583

RESUMEN

CONTEXT: Huangqi Guizhi Wuwu Decoction (HGWD) is effective in treating ischaemic stroke (IS). However, its mechanism of action is still unclear. OBJECTIVE: Network pharmacology integrated with in vivo experiments were used to clarify the underlying mechanisms of HGWD for treating IS. MATERIALS AND METHODS: TCMSP, GeneCards, OMIM and STRING were used to retrieve and construct visual protein interaction networks for the key targets. The AutoDock tool was used for molecular docking between key targets and active compounds. The neuroprotective effect of HGWD were verified in a middle cerebral artery occlusion (MCAO) model rat. The Sprague-Dawley (SD) rats were divided into sham, model, low-dose (5 g/kg, i.g.), high-dose (20 g/kg, i.g.), and nimodipine (20 mg/kg, i.g.) groups once daily for 7 days. The neurological scores, brain infarct volumes, lipid peroxidation, inflammatory cytokines, Nissl bodies, apoptotic neurons, and signalling pathways were all investigated and evaluated in vivo. RESULTS: Network pharmacology identified 117 HGWD targets related to IS and 36 candidate compounds. GO and KEGG analyses showed that HGWD anti-IS effects were mainly associated with PI3K-Akt and HIF-1 signalling pathways. HGWD effectively reduced the cerebral infarct volumes (19.19%), the number of apoptotic neurons (16.78%), and the release of inflammatory cytokines, etc. in MCAO rats. Furthermore, HGWD decreased the levels of HIF-1A, VEGFA, Bax, cleaved caspase-3, p-MAPK1, and p-c-Jun while increasing the expression of p-PI3K, p-AKT1, and Bcl-2. DISCUSSION AND CONCLUSION: This study initially elucidated the mechanism of HGWD anti-IS, which contributed to the further promotion and secondary development of HGWD in clinical practice.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Ratas , Ratas Sprague-Dawley , Farmacología en Red , Isquemia Encefálica/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas , Accidente Cerebrovascular/tratamiento farmacológico , Citocinas , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
6.
Phytomedicine ; 115: 154843, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37149966

RESUMEN

BACKGROUND: Chinese herbal formulae has multiple active constituents and targets, and the good clinical response is encouraging more scientists to explore the bio-active ingredients in such complex systems. Yi-Fei-San-Jie formula (YFSJF) is commonly used to treat patients with lung cancer in South China; however, its bio-active ingredients remain unknown. PURPOSE: We investigated the bio-active ingredients of the YFSJF using a novel comprehensive strategy. METHODS: A549 cell extraction coupled with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was used for the screening of potential bio-active ingredients. Network pharmacology approach and molecular dynamics simulation were performed for the screening of targets. Surface plasmon resonance (SPR) assay and molecular biology techniques were used to verify the targets. RESULTS: Nine A549 cell membrane-binding compounds were identified through cell extraction/UPLC-MS/MS. Five compounds, namely ginsenoside Ro, ginsenoside Rb1, ginsenoside Rc, peimisine, and peimine were cytotoxic to A549 cells, and they were considered the bio-active ingredients of the YFSJF in vitro. Network pharmacology analysis revealed that TGFBR2 is the key target and the TGFß pathway is the key pathway targeted by YFSJF in non-small cell lung cancer. Peimisine showed an affinity to TGFBR2 using molecular docking and dynamic stimulation, which was confirmed using surface plasmon resonance spectroscopy. The molecular biology-based analysis further confirmed that peimisine targets TGFBR2 and can reverse A549 epithelial-mesenchymal transition by inhibiting the TGFß pathway. CONCLUSION: Taken together, cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology-based analysis comprise a feasible strategy to explore active ingredients in YFSJF.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptor Tipo II de Factor de Crecimiento Transformador beta , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacología
7.
Bioresour Technol ; 379: 128996, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37011845

RESUMEN

Chinese medicinal herbal residues (CMHRs) are waste generated after extracting Chinese medicinal materials, and they can be used as a renewable bioresource. This study aimed to evaluate the potential of aerobic composting (AC), anaerobic digestion (AD), and aerobic-anaerobic coupling composting (AACC) for the treatment of CMHRs. CMHRs were mixed with sheep manure and biochar, and composted separately under AC, AD, and AACC conditions for 42 days. Physicochemical indices, enzyme activities, and bacterial communities were monitored during composting. Results showed that AACC- and AC-treated CMHRs were well-rotted, with the latter exhibiting the lowest C/N ratio and maximal germination index (GI) values. Higher phosphatase and peroxidase activities were detected during the AACC and AC treatments. Better humification was observed under AACC based on the higher catalase activities and lower E4/E6. AC treatment was effective in reducing compost toxicity. This study provides new insights into biomass resource utilisation.


Asunto(s)
Compostaje , Medicamentos Herbarios Chinos , Animales , Ovinos , Anaerobiosis , Bacterias , Estiércol , Medicamentos Herbarios Chinos/química , Suelo
8.
Altern Ther Health Med ; 29(1): 245-251, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36239570

RESUMEN

Context: Patients with pancreatic cancer (PC) at a late stage often suffer from severe abdominal pain due to the invasion of celiac plexus, and the analgesics they receive often have intolerable side effects. Endoscopic, ultrasound-guided, celiac plexus neurolysis (EUS-guided CPN) can have a good therapeutic effect. Objective: The study intended to evaluate the ability of two nursing cooperation patterns to reduce patients' pain, decrease operation times, increase operational efficiency, and increase nurses' satisfaction, for patients with advanced PC and abdominal pain who received EUS-guided CPN. Design: The research team designed a retrospective controlled study. Setting: The study took place at the Shenzhen People's Hospital of the Second Clinical Medical College of Jinan University in Shenzhen, China, and at the Changhai Hospital of the Second Military Medical University in Shanghai, China. Participants: Participants were 40 patients with advanced PC who received EUS-guided CPN at one of the two hospitals between January 2019 and January 2020. Intervention: Twenty participants at Changhai Hospital received the traditional nursing cooperation pattern and became the control group, and 20 participants at the Shenzhen People's Hospital received the new nursing cooperation pattern and became the intervention group. Outcome Measures: The study measured clinical data, nursing measures, diagnostic significance, and key points for the two patterns as well as compared the effects of the new nursing cooperation method to that of traditional nursing. If the measurement data met the requirements for normality, the team used the two independent sample t-test for the intergroup comparisons. If normality wasn't satisfied, the team used medians and interquartile ranges (IQRs) for expression and the rank sum test for the intergroup comparisons. Counting data were expressed using the constituent ratio, and team used the chi-square test for comparisons between groups. P < .05 was considered to be statistically significant. Results: The operations were successful, and no complications occurred. No significant difference existed in the pain scores between the control group and the intervention group (P > .05), while a significant difference occurred in the nurses' operation times and satisfaction. Not only were the scores for operation times for the control group (97) and the intervention group (59) significantly different, but also the nurses' satisfaction was significantly higher for the intervention group postintervention, at 83.35 ± 5.25, than for the control group, at 62.25 ± 8.18 (P < .001). Such a new nursing cooperation method could assist in patient's rehabilitation and increase nurses' satisfaction. Conclusions: The new nursing cooperation method for patients with advanced PC and abdominal pain undergoing EUS-guided CPN can reduce operation time and improve nurses' satisfaction.


Asunto(s)
Plexo Celíaco , Neoplasias Pancreáticas , Humanos , Plexo Celíaco/diagnóstico por imagen , Plexo Celíaco/cirugía , Estudios Retrospectivos , Endosonografía/efectos adversos , Endosonografía/métodos , China , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/terapia , Dolor Abdominal/etiología , Dolor Abdominal/cirugía , Ultrasonografía Intervencional/efectos adversos , Neoplasias Pancreáticas
9.
J Asian Nat Prod Res ; 25(5): 438-445, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35923147

RESUMEN

Two undescribed dammarane triterpenoid saponins, cypaliurusides O and P (1 and 2), were isolated from the ethanol extracts of the leaves of Cyclocarya paliurus. Bioactivity assay results showed that compound 1 has potential cytotoxic activities against selected human cancer cell lines in vitro, with IC50 values ranging from 14.55 ± 0.55 to 22.75 ± 1.54 µM. Compound 1 showed better antitumor activity against HepG2 cells with IC50 of 14.55 ± 0.55 µM. In addition, compound 2 showed no obvious antitumor activity.


Asunto(s)
Juglandaceae , Saponinas , Triterpenos , Humanos , Triterpenos/farmacología , Extractos Vegetales , Línea Celular , Saponinas/farmacología , Hojas de la Planta , Damaranos
10.
Molecules ; 27(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431869

RESUMEN

Medicinal and food homology materials are a group of drugs in herbal medicine that have nutritional value and can be used as functional food, with great potential for development and application. Flavonoids are one of the major groups of components in pharmaceutical and food materials that have been found to possess a variety of biological activities and pharmacological effects. More and more analytical techniques are being used in the study of flavonoid components of medicinal and food homology materials. Compared to traditional analytical methods, spectroscopic analysis has the advantages of being rapid, economical and free of chemical waste. It is therefore widely used for the identification and analysis of herbal components. This paper reviews the application of spectroscopic techniques in the study of flavonoid components in medicinal and food homology materials, including structure determination, content determination, quality identification, interaction studies, and the corresponding chemometrics. This review may provide some reference and assistance for future studies on the flavonoid composition of other medicinal and food homology materials.


Asunto(s)
Flavonoides , Medicina Tradicional China , Flavonoides/análisis , Fitoterapia , Análisis Espectral , Alimentos Funcionales/análisis
11.
Int J Nanomedicine ; 17: 1987-2000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530975

RESUMEN

Purpose: This study aimed to construct a delivery system based on L-arginine-modified calcium phosphate (CaP) to load eNOS plasmids (peNOS), which could amply nitric oxide (NO) to repair endothelial damage, promote angiogenic activities and alleviate inflammation. Methods: pDNA-loaded CaP nanocomplex (CaP/pDNA) were prepared by co-precipitation method, subsequently modified by L-arginine. The gene transfection efficiency, pro-angiogenic and anti-inflammatory ability were investigated in vivo and in vitro. The therapeutic effect on ischemic hindlimb in vivo was assessed. Results: L-arginine modification augmented the transfection efficiency of CaP/peNOS to elevate the eNOS expression, and then served as NO substrate catalyzed by eNOS. At the same time, calcium ions produced by degradation of CaP carriers enhanced the activity of eNOS. In vitro experiments, the loading capability and transfection performance of R(L)-CaP were confirmed to be superior to that of CaP. Additionally, HUVECs treated with R(L)-CaP/peNOS showed the strongest NO release, cell migration, tube formation and the lowest inflammatory levels compared to the CaP/peNOS and R(D)-CaP/peNOS groups. We also demonstrated the advantages of R(L)-CaP/peNOS in increasing blood reperfusion in hindlimb ischemia mice by accelerating angiogenesis and reducing inflammation, which can be attributed to the highest eNOS-derived NO production. Conclusion: The combination strategy of peNOS transfection, L-arginine supplement and calcium ions addition is a promising therapeutic approach for certain vascular diseases, based on the synergistic NO production.


Asunto(s)
Calcio , Óxido Nítrico , Animales , Arginina/uso terapéutico , Calcio/metabolismo , Técnicas de Transferencia de Gen , Inflamación , Iones , Isquemia/terapia , Ratones , Neovascularización Fisiológica , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo
12.
Curr Cancer Drug Targets ; 22(5): 388-403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34970954

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks receptors for targeted therapy. Consequently, chemotherapy is currently the mainstay of systemic treatment options. However, the enrichment of cancer stem cells (CSC, a subpopulation with stem-cell characteristics and tumor-initiating propensity) promotes chemo-resistance and tumorigenesis, resulting in cancer recurrence and relapse. Furthermore, toxic side effects of chemotherapeutics reduce patient wellbeing. Natural products specifically compounds derived from plants, have the potential to treat TNBC and target CSCs by inhibiting CSC signaling pathways. Literature evidence from six promising compounds was reviewed, including sulforaphane, curcumin, genistein, resveratrol, lycopene, and epigallocatechin-3-gallate. These compounds have been shown to promote cell cycle arrest and apoptosis in TNBC cells. They also could inhibit the epithelial-mesenchymal transition (EMT) that plays an important role in metastasis. In addition, those natural compounds have been found to inhibit pathways important for CSCs, such as NF-κB, PI3K/Akt/mTOR, Notch 1, Wnt/ß- catenin, and YAP. Clinical trials conducted on these compounds have shown varying degrees of effectiveness. Epidemiological case-control studies for the compounds commonly consumed in certain human populations have also been summarized. While in vivo and in vitro data are promising, further basic and clinical investigations are required. Likely, natural products in combination with other drugs may hold great potential to improve TNBC treatment efficacy and patient outcomes.


Asunto(s)
Productos Biológicos , Neoplasias de la Mama Triple Negativas , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Recurrencia Local de Neoplasia , Fosfatidilinositol 3-Quinasas , Neoplasias de la Mama Triple Negativas/metabolismo
13.
Front Pharmacol ; 13: 1087404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36642988

RESUMEN

Introduction: The Huanglian Jiedu decoction (HLJDD) is a Chinese herbal formula that exerts neuroprotective effects by alleviating oxidative stress injuries and may potentially be prescribed for treating Alzheimer's disease; however, its active ingredients have not yet been identified. Cell membrane chromatography is a high-throughput method for screening active ingredients, but traditional cell membrane chromatography requires multiple centrifugation steps, which affects its separation efficiency. Magnetic nanoparticles are unparalleled in solid-liquid separation and can overcome the shortcomings of traditional cell membrane chromatography. Methods: In this study, the neuroprotective effects of the components of HLJDD were screened through a novel magnetic nanoparticle-assisted cell membrane chromatography method. Magnetic nanoparticles and cell membranes were stably immobilized by amide bonds. Magnetic bead (MB)-immobilized cell membranes of HT-22 cells were incubated with the HLJDD extract to isolate specific binding components. The specific binding components were then identified by ultraperformance liquid chromatography (UPLC)-Orbitrap Fusion Tribrid MS after solid-phase extraction. The bioactivity of these components was analyzed in an HT-22 cellular model of glutamate-induced injury. Results and Discussion: The preparation method of the composite of cell membrane and MBs has the advantages of simple preparation and no introduction of toxic organic reagents. MBs not only provide support for cell membranes, but also greatly improve the separation efficiency compared with traditional cell membrane chromatography. Fifteen of these components were found to specifically bind to the cell membranes, and seven of them were confirmed to reduce varying degrees of glutamate-induced toxicity in HT-22 cells. In conclusion, our findings suggest that the amide bond-based immobilization of magnetic nanoparticles on cell membranes, along with solid-phase extraction and UPLC, is an effective method for isolating and discovering the bioactive components of traditional Chinese medicines.

14.
World J Gastrointest Oncol ; 13(6): 462-471, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34163567

RESUMEN

Gastrointestinal stromal tumors can occur in any part of the gastrointestinal tract, but gastric stromal tumors (GSTs) are the most common. All GSTs have the potential to become malignant, and these can be divided into four different grades by risk from low to high: Very low risk, low risk, medium risk, and high risk. Current guidelines all recommend early complete excision of GSTs larger than 2 cm in diameter. However, it is not clear whether small GSTs (sGSTs, i.e., those smaller than 2 cm in diameter) should be treated as early as possible. The National Comprehensive Cancer Network recommends that endoscopic ultrasonography-guided (EUS-guided) fine-needle aspiration biopsy and imaging (computed tomography or magnetic-resonance imaging) be used to assess cancer risk for sGSTs detected by gastroscopy to determine treatment. When EUS indicates a higher risk of tumor, surgical resection is recommended. There are some questions on whether sGSTs also require early treatment. Many studies have shown that endoscopic treatment of GSTs with diameters of 2-5 cm is very effective. We here address whether endoscopic therapy is also suitable for sGSTs. In this paper, we try to explain three questions: (1) Does sGST require treatment? (2) Is digestive endoscopy a safe and effective means of treating sGST? and (3) When sGSTs are at different sites and depths, which endoscopic treatment method is more suitable?

15.
Biomed Pharmacother ; 137: 111338, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33578234

RESUMEN

Polysaccharide is one of main components in Polygonatum sibiricum (PS), which is an herbal medicine widely used in East Asia. Polysaccharides from Polygonatum sibiricum has been shown to exhibit multiple biological activities, such as anti-diabetes, anti-inflammation, antioxidant, immunity modulation, and anticancer. Since hematopoietic system is one of determinant factors in cancer control, we here explored the effect of polysaccharide-rich extract from Polygonatum sibiricum (PREPS) on hematopoiesis in the mice bearing triple negative breast cancer (TNBC). We found that the 4T1 TNBC tumor significantly increased myeloid cells in peripheral blood, bone marrow and spleen, while decreasing bone marrow hematopoietic stem and progenitor cells (HSPCs), indicative of an inhibition of medullary hematopoiesis. When 4T1 TNBC tumor-bearing mice were treated with PREPS, the percentage of myeloid cells within tumor-infiltrating immune cells was reduced. In addition, PREPS also inhibited hematopoietic cell expansion in the spleen, which was induced by TNBC tumors. Importantly, PREPS markedly increased HSPCs and common lymphoid progenitors in the bone marrow that had been suppressed by TNBC tumors. These findings suggest that PREPS protect hematopoiesis inhibited by TNBC tumors in the bone marrow. Although PREPS alone did not achieve statistical significance in the suppression of TNBC tumor growth, it may have a long-lasting anti-tumor effect to assist TNBC therapies by sustaining hematopoiesis and lymphoid regeneration in bone marrow.


Asunto(s)
Médula Ósea/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Hematínicos/farmacología , Hematopoyesis/efectos de los fármacos , Polygonatum/química , Polisacáridos/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Hematínicos/aislamiento & purificación , Hematínicos/uso terapéutico , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos BALB C , Plantas Medicinales/química , Polisacáridos/aislamiento & purificación , Polisacáridos/uso terapéutico , Sustancias Protectoras/farmacología , Bazo/efectos de los fármacos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo
16.
Drug Des Devel Ther ; 15: 5165-5178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002223

RESUMEN

OBJECTIVE: The Chinese medicine Huangqi Guizhi Wuwu Decoction (HGWD) has been reported to improve the clinical symptoms and restore nerve function after ischemic stroke; however, its active ingredients are not well-determined. Therefore, this study aimed to investigate the bioactive compounds of HGWD and explore the possible mechanism of action. METHODS: The methods, including live HT22 cells, solid-phase extraction, and HPLC-MS/MS were utilized. The potential ingredients were identified through comparisons with literature and monomer compounds. Then, oxygen-glucose deprivation reperfusion (OGD/R)-treated HT22 cells were utilized to investigate the effect of HGWD components with specific binding affinities. Reactive oxygen species (ROS), superoxide dismutase (SOD), lactate dehydrogenase (LDH), and Tunel staining were used as testing indexes to analyze the protective effects of potential active ingredients on OGD/R-induced damage. RESULTS: Eleven compounds with specific binding affinities were identified as calycosin-7-O-glucoside, calycosin, formononetin, cinnamic alcohol, cinnamic acid, betaine, dl-2-phenylpropionic acid, 4-hydroxycinnamic acid, 6-methylcoumarin, wogonin, and paeoniflorin. Among them, six compounds had a protective effect on OGD/R-treated HT22 cells. Furthermore, calycosin-7-O-glucoside, calycosin, paeoniflorin, 4-hydroxycinnamic acid, wogonin, and formononetin could regulate oxidative stress and apoptosis to attenuate the cell damage caused by OGD/R. CONCLUSION: The mechanism of action of HGWD to promote neurological recovery after ischemic stroke was related to the regulation of oxidative stress and apoptosis. This study suggested that cell membrane affinity chromatography combined with HPLC-MS/MS could be applied to screen potential active components in traditional Chinese medicines (TCM).


Asunto(s)
Medicamentos Herbarios Chinos/química , Fármacos Neuroprotectores/uso terapéutico , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Hipoxia/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Espectrometría de Masas , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno , Recuperación de la Función , Extracción en Fase Sólida , Superóxido Dismutasa/metabolismo
17.
Drug Des Devel Ther ; 14: 2877-2888, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764886

RESUMEN

OBJECTIVE: The aim of our research was to analyze and compare the pharmacokinetics of paeoniflorin, calycosin, calycosin-7-o-ß-d-6-glucoside, and 6-gingerol in the blood and brain tissue of normal and cerebral ischemia-reperfusion injury rats by HPLC-MS/MS method. METHODS: The blood and brain tissue samples of normal and middle cerebral artery occlusion (MCAO) rats were compared. The blood and brain tissue samples were collected by using microdialysis technique. The concentrations of paeoniflorin, calycosin, calycosin-7-o-ß-d-6-glucoside, and 6-gingerol in blood and brain tissues were determined by the HPLC-MS/MS internal standard method. RESULTS: Compared with the normal group, the model group after the administration of the Huangqi Guizhi Wuwu Decoction showed that Cmax blood, AUC0-t blood, and AUC0-inf blood of paeoniflorin were increased, CLblood, t1/2 brain, and Vbrain of paeoniflorin were decreased; Cmaxblood, AUC0-tblood, AUC0-infblood, and average residence time (MRTbrain) of calycosin-7-o-ß-d-6-glucoside were decreased and the CLblood and Cmax brain of calycosin-7-o-ß-d-6-glucoside were increased; Cmax blood of calycosin was decreased, Vblood and Vbrain of calycosin were increased; Cmax blood, AUC0-t blood, AUC0-inf blood, and MRTbrain of 6-gingerol were decreased, CLblood of 6-gingerol was increased. CONCLUSION: This method is simple, rapid, and sensitive. It is suitable for the pharmacokinetic study of Huangqi Guizhi Wuwu Decoction in the blood and brain tissue of rats. Cerebral ischemia-reperfusion injury increased the content of paeoniflorin, calycosin, calycosin-7-o-ß-d-6-glucoside, and 6-gingerol in the blood, affecting the clearance rate of paeoniflorin in the brain, the detention time of calycosin-7-o-ß-d-6-glucoside and the 6-gingerol in the brain. In normal and cerebral ischemia-reperfusion rats, the content of paeoniflorin and 6-gingerol in the blood was higher than that in brain tissue, while the content of calycosin, calycosin-7-o-ß-d-6-glucoside in the brain tissue was higher than that in blood, suggesting that calycosin and calycosin-7-o-ß-d-6-glucoside have brain targeting properties.


Asunto(s)
Encéfalo/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Administración Oral , Animales , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Masculino , Microdiálisis , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión , Espectrometría de Masas en Tándem
18.
Biomed Res Int ; 2019: 6970198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31662991

RESUMEN

Buyang Huanwu decoction (BHD), a popular formulation prescribed in traditional Chinese medicine (TCM) for the treatment of ischemic stroke, has been reported to have a potential role in promoting axonal regeneration. The purpose of the study was to screen and identify bioactive compounds from BHD using live PC12 cells coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Using this approach, we successfully identified six bioactive components from BHD. These components have protective effects on oxygen-glucose deprivation/reperfusion (OGD/R) injury to PC12 cells. Furthermore, calycosin-7-d-glucoside (CG) and formononetin-7-O-ß-d-glucoside (FG) could upregulate the protein expression of growth-associated protein 43 (GAP-43) and brain-derived neurotrophic factor (BDNF). This study suggests that living cells combined with HPLC-MS/MS can be used for the screening of active ingredients in TCMs.


Asunto(s)
Axones/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Regeneración/efectos de los fármacos , Animales , Axones/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Proteína GAP-43/metabolismo , Glucósidos/farmacología , Isoflavonas/farmacología , Medicina Tradicional China/métodos , Células PC12 , Sustancias Protectoras/farmacología , Ratas , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Espectrometría de Masas en Tándem/métodos
19.
J Vis Exp ; (147)2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31157761

RESUMEN

The age of a submarine hydrothermal sulfide is a significant index for estimating the size of hydrothermal ore deposits. Uranium and thorium isotopes in the samples can be separated for 230Th-U dating. This article presents a method to purify and separate U and Th isotopes in submarine hydrothermal sulfide samples. Following this technique, the separated U and Th fractions can meet measuring requirements by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The age of the hydrothermal sulfide sample can be calculated by measuring the present-day activity ratios of 230Th/238U and 234U/238U. A super clean room is necessary for this experiment. Cleaned regents and supplies are used to reduce the contamination during the sample processes. Balance, hotplate, and centrifuge are also used. The sulfide sample is powdered for analysis and less than 0.2 g sample is used. Briefly, the sample is weighed, dissolved, added to 229Th-233U-236U double spike solution, Fe co-precipitated, and separated on an anion-exchange resin extraction column. Approximately 50 ng U is consumed for 230Th-U dating of sulfides sample by MC-ICPMS.


Asunto(s)
Respiraderos Hidrotermales/química , Sulfuros/análisis , Torio/aislamiento & purificación , Uranio/aislamiento & purificación , Navíos , Análisis Espectral , Torio/análisis , Uranio/análisis
20.
RSC Adv ; 9(50): 29217-29224, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35528420

RESUMEN

Buyang Huanwu decoction (BHD) is a well-known traditional Chinese medicine that has long been used to treat ischemic brain damage which is associated with hemorheology. To screen active ingredients in BHD responsible for reducing blood viscosity by reducing red blood cell (RBC) lesions to treat ischemic stroke, a method involving RBC membrane binding and solid-phase extraction (SPE) was developed in this study. The components of BHD interacting with RBC were analyzed by mass spectrometry and four compounds, calycosin, paeoniflorin, 6-hydroxy behenol-3,6-di-O-glucoside and calycosin-7-O-ß-d-glucoside, showed binding affinity to RBCs. An erythrocyte activity assay revealed that the identified ingredients promoted the activities of Na+-K+-ATPase, sialic acid and superoxide dismutase and reduced the content of cholesterol on the RBC membrane, suggesting a mechanism underlying their anti-erythrocyte aggregation activity. Based on these results, the RBC membrane binding assay combined with SPE and mass spectrometry is a novel and effective approach for screening potentially anti-erythrocyte lesion constituents in traditional Chinese medicines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA