Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Biochem ; 125(3): e30522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224175

RESUMEN

Understanding the connection between senescence phenotypes and mitochondrial dysfunction is crucial in aging and premature aging diseases. Loss of mitochondrial function leads to a decline in T cell function, which plays a significant role in this process. However, more research is required to determine if improving mitochondrial homeostasis alleviates senescence phenotypes. Our research has shown an association between NAD+ and senescent T cells through the cGAS-STING pathway, which can lead to an inflammatory phenotype. Further research is needed to fully understand the role of NAD+ in T-cell aging and how it can be utilized to improve mitochondrial homeostasis and alleviate senescence phenotypes. We demonstrate here that mitochondrial dysfunction and cellular senescence with a senescence-associated secretory phenotype (SASP) occur in senescent T cells and tumor-bearing mice. Senescence is mediated by a stimulator of interferon genes (STING) and involves ectopic cytoplasmic DNA. We further show that boosting intracellular NAD+ levels with nicotinamide mononucleotide (NMN) prevents senescence and SASP by promoting mitophagy. NMN treatment also suppresses senescence and neuroinflammation and improves the survival cycle of mice. Encouraging mitophagy may be a useful strategy to prevent CD8+ T cells from senescence due to mitochondrial dysfunction. Additionally, supplementing with NMN to increase NAD+ levels could enhance survival rates in mice while also reducing senescence and inflammation, and enhancing mitophagy as a potential therapeutic intervention.


Asunto(s)
Enfermedades Mitocondriales , NAD , Ratones , Animales , NAD/metabolismo , Linfocitos T CD8-positivos/metabolismo , Mitocondrias/metabolismo , Senescencia Celular/fisiología , Homeostasis , Enfermedades Mitocondriales/metabolismo , Suplementos Dietéticos
2.
Curr Pharmacol Rep ; 6(3): 56-70, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32395418

RESUMEN

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presented unprecedented challenges to the healthcare systems in almost every country around the world. Currently, there are no proven effective vaccines or therapeutic agents against the virus. Current clinical management includes infection prevention and control measures and supportive care including supplemental oxygen and mechanical ventilatory support. Evolving research and clinical data regarding the virologic SARS-CoV-2 suggest a potential list of repurposed drugs with appropriate pharmacological effects and therapeutic efficacies in treating COVID-19 patients. In this review, we will update and summarize the most common and plausible drugs for the treatment of COVID-19 patients. These drugs and therapeutic agents include antiviral agents (remdesivir, hydroxychloroquine, chloroquine, lopinavir, umifenovir, favipiravir, and oseltamivir), and supporting agents (Ascorbic acid, Azithromycin, Corticosteroids, Nitric oxide, IL-6 antagonists), among others. We hope that this review will provide useful and most updated therapeutic drugs to prevent, control, and treat COVID-19 patients until the approval of vaccines and specific drugs targeting SARS-CoV-2.

3.
J Pharmacokinet Pharmacodyn ; 47(2): 131-144, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32020381

RESUMEN

Curcumin (CUR) is a major component of turmeric Curcuma longa, which is often used in food or as a dietary supplement. The purpose of this preclinical study is to investigate the acute pharmacokinetic and pharmacodynamic (PK/PD) profiles of two commercially marketed CUR products (GNC and Vitamin Shoppe) and a CUR powder from Sigma in female rats. Plasma samples were collected at specific time points and analyzed for CUR and its metabolite curcumin-O-glucuronide. RNA was extracted from leukocytes and analyzed for the expression of Nrf2-mediated antioxidant genes Nrf2, Ho-1, and Nqo1 by qPCR as selected PD markers. CUR PK was characterized by a 2-compartment model (2CM) after intravenous (IV) or oral administrations. Compared to IV CUR, the absolute bioavailability (F) of CUR for GNC (GC) is 0.9%, Vitamin Shoppe (VC) is 0.6% and Sigma (SC) is 3.1%. Pharmacodynamically, all three formulations showed induction of antioxidant Nrf2, Ho-1 and Nqo1 gene expression in rat leucocytes. PK/PD modeling of CUR's effect on antioxidant gene expression was well captured by an indirect response model. Physiologically based PK modeling and simulation using GastroPlus described the observed PK data reasonably well. In summary, our current study shows that the absolute oral bioavailability of the parent CUR was very low for all three formulations. However, despite the low CUR plasma concentrations, all three oral CUR formulations displayed PD response in the induction of Nrf2-mediated antioxidant genes, suggesting the potential of oral CUR contributing to the overall health beneficial effects of oral CUR.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Curcumina/administración & dosificación , Curcumina/farmacocinética , Administración Intravenosa , Administración Oral , Animales , Antioxidantes/metabolismo , Curcuma , Curcumina/análogos & derivados , Composición de Medicamentos , Femenino , Glucurónidos , Hemo-Oxigenasa 1/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Extractos Vegetales , Polvos , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Mol Carcinog ; 59(2): 227-236, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31820492

RESUMEN

Colorectal cancer (CRC) is associated with significant morbidity and mortality in the US and worldwide. CRC is the second most common cancer-related death in both men and women globally. Chronic inflammation has been identified as one of the major risk factors of CRC. It may drive genetic and epigenetic/epigenomic alterations, such as DNA methylation, histone modification, and non-coding RNA regulation. Current prevention modalities for CRC are limited and some treatment regimens such as use the nonsteroidal anti-inflammatory drug aspirin may have severe side effects, namely gastrointestinal ulceration and bleeding. Therefore, there is an urgent need of developing alternative strategies. Recently, increasing evidence suggests that several dietary cancer chemopreventive phytochemicals possess anti-inflammation and antioxidative stress activities, and may prevent cancers including CRC. Curcumin (CUR) is the yellow pigment that is found in the rhizomes of turmeric (Curcuma longa). Many studies have demonstrated that CUR exhibit strong anticancer, antioxidative stress, and anti-inflammatory activities by regulating signaling pathways, such as nuclear factor erythroid-2-related factor 2, nuclear factor-κB, and epigenetics/epigenomics pathways of histones modifications, and DNA methylation. In this review, we will discuss the latest evidence in epigenetics/epigenomics alterations by CUR in CRC and their potential contribution in the prevention of CRC.


Asunto(s)
Neoplasias del Colon/prevención & control , Curcumina/farmacología , Epigénesis Genética/efectos de los fármacos , Epigenómica , Inflamación/prevención & control , Antineoplásicos/farmacología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Curcuma/química , Humanos , Inflamación/genética , Inflamación/patología , Estadificación de Neoplasias , Fitoterapia/métodos
5.
Mol Pharm ; 16(5): 1881-1889, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30860383

RESUMEN

Curcumin is a major component of the spice turmeric ( Curcuma longa), often used in food or as a dietary supplement. Many preclinical studies on curcumin suggest health benefits in many diseases due to its antioxidant/anti-inflammatory and epigenetic effects. The few human studies and curcumin's unfavorable pharmacokinetics (PK) have limited its potential, leading researchers to study and develop formulations to improve its PK. The purpose of this clinical study is to describe the acute pharmacokinetics and pharmacodynamics (PK/PD) of commercially marketed curcumin in normal, healthy human volunteers. Twelve volunteers received a 4 g dose of curcumin capsules with a standard breakfast. Plasma samples were collected at specified time points and analyzed for curcumin and its glucuronide levels. RNA was extracted from leukocytes and analyzed for expression of select antioxidant and epigenetic histone deacetylase (HDAC) genes. Plasma levels of parent curcumin were below the detection limit by HPLC-ITMS/MS/MS. However, curcumin-O-glucuronide (COG), a major metabolite of curcumin, was detected as soon as 30 min. These observations of little to no curcumin and some levels of metabolite are in line with previous studies. PD marker antioxidant genes NRF2, HO-1, and NQO1 and epigenetic genes HDAC1, HDAC2, HDAC3, and HDAC4 were quantified by qPCR. COG PK is well-described by a one-compartment model, and the PK/PD of COG and its effect on antioxidant and epigenetic gene expression are captured by an indirect response model (IDR). A structural population PK model was sequentially established using a nonlinear mixed-effect model program (Monolix Lixoft, Orsay, France). Physiologically based pharmacokinetic modeling (PBPK) and simulation using Simcyp correlated well with the observed data. Taken together, these results show that the bioavailability of the parent curcumin compound is low, and oral administration of curcumin can still deliver detectable levels of curcumin glucuronide metabolite. But most importantly, it elicits antioxidant and epigenetic effects which could contribute to the overall health beneficial effects of curcumin.


Asunto(s)
Antioxidantes/farmacocinética , Curcumina/análogos & derivados , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucurónidos/farmacocinética , Modelos Biológicos , Extractos Vegetales/farmacocinética , Administración Oral , Adolescente , Adulto , Antioxidantes/administración & dosificación , Disponibilidad Biológica , Cápsulas/administración & dosificación , Cápsulas/química , Curcuma , Curcumina/administración & dosificación , Curcumina/farmacocinética , Femenino , Glucurónidos/administración & dosificación , Glucurónidos/sangre , Voluntarios Sanos , Hemo-Oxigenasa 1/genética , Histona Desacetilasas/genética , Humanos , Masculino , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/genética , Extractos Vegetales/administración & dosificación , Extractos Vegetales/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA