Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 18(1): 89, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527262

RESUMEN

BACKGROUND: Farnesol is a sesquiterpene from propolis and citrus fruit that shows promising anti-bacterial activity for caries treatment and prevention, but its hydrophobicity limits the clinical application. We aimed to develop the novel polymeric micelles (PMs) containing a kind of derivative of farnesol and a ligand of pyrophosphate (PPi) that mediated PMs to adhere tightly with the tooth enamel. RESULTS: Farnesal (Far) was derived from farnesol and successfully linked to PEG via an acid-labile hydrazone bond to form PEG-hyd-Far, which was then conjugated to PPi and loaded into PMs to form the aimed novel drug delivery system, PPi-Far-PMs. The in vitro test about the binding of PPi-Far-PMs to hydroxyapatite showed that PPi-Far-PMs could bind rapidly to hydroxyapatite and quickly release Far under the acidic conditions. Results from the mechanical testing and the micro-computed tomography indicated that PPi-Far-PMs could restore the microarchitecture of teeth with caries. Moreover, PPi-Far-PMs diminished the incidence and severity of smooth and sulcal surface caries in rats that were infected with Streptococcus mutans while being fed with a high-sucrose diet. The anti-caries efficacy of free Far can be improved significantly by PPi-Far-PMs through the effective binding of it with tooth enamel via PPi. CONCLUSIONS: This novel drug-delivery system may be useful for the treatment and prevention of dental caries as well as the targeting therapy of anti-bacterial drugs in the oral disease.


Asunto(s)
Cariostáticos , Caries Dental , Durapatita , Farnesol/análogos & derivados , Micelas , Animales , Cariostáticos/química , Cariostáticos/farmacocinética , Cariostáticos/farmacología , Caries Dental/tratamiento farmacológico , Caries Dental/metabolismo , Caries Dental/patología , Difosfatos/química , Difosfatos/farmacocinética , Difosfatos/farmacología , Portadores de Fármacos , Durapatita/química , Durapatita/metabolismo , Farnesol/química , Farnesol/farmacocinética , Farnesol/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Diente Molar/efectos de los fármacos , Diente Molar/ultraestructura , Polietilenglicoles/química , Ratas , Streptococcus mutans/efectos de los fármacos
2.
J Sep Sci ; 42(11): 2044-2052, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30993863

RESUMEN

A highly efficient and ecofriendly extraction method using deep eutectic solvents was developed to extract bioactive flavonoids from Abelmoschus manihot (Linn.) Medicus flowers. First, a series of deep eutectic solvents using choline chloride as hydrogen bond acceptor with different hydrogen bond donors was successfully synthesized. Then, the types of deep eutectic solvents and the extraction conditions for bioactive flavonoids (hyperoside, isoquercitrin, and myricetin) were optimized based on the flavonoids extraction efficiencies. The optimized deep eutectic solvent for hyperoside and isoquercitrin extraction was composed of choline chloride and acetic acid with a molar ratio of 1:2. The optimized deep eutectic solvent for myricetin extraction was composed of one mole of choline chloride and two moles of methacrylic acid. The optimal extraction conditions were set as: solid to solvent ratio, 35:1 (mg/mL); extraction time, 30 min; extraction temperature, 30°C. Qualitative and quantitative analysis were performed using ultra high performance liquid chromatography with tandem mass spectrometry and high-performance liquid chromatography. And the extraction efficiencies of hyperoside, isoquercitrin, and myricetin under optimal extraction conditions were calculated as 11.57, 5.64, and 1.11 mg/g, much higher than those extracted by traditional extraction solvents. Therefore, the prepared deep eutectic solvents can be selected as alternative solvent to extract bioactive flavonoids.


Asunto(s)
Abelmoschus/química , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/aislamiento & purificación , Extractos Vegetales/análisis , Extractos Vegetales/aislamiento & purificación , Flores/química , Espectrometría de Masas en Tándem
3.
Artículo en Inglés | MEDLINE | ID: mdl-30195070

RESUMEN

Herein, novel dual functional monomers based molecularly imprinted polymers (MIPs) were successfully prepared and used to extract myricetin from Carthamus tinctorius L., also named safflower (family, Compositae) and the flower of Abelmoschus manihot (Linn.) Medicus (family, Malvaceae). The polymers were prepared using myricetin as template, 4-vinylpyridine (4-VP) and glycidyl methacrylate (GMA) as dual functional monomers, ethylene glycol dimethyl acrylate (EGDMA) as cross-linker and methanol-acetonitrile (1:2, v/v) as solvent, respectively. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were applied to characterize the polymers. Further, the adsorption and selectivity experiments of MIPs were evaluated. The results revealed that MIPs showed high adsorption ability and selectivity toward myricetin. Finally, MIPs were employed as adsorbents for solid phase extraction (SPE) of myricetin from safflower and the flowers of A. manihot (Linn.) Medicus. Further analysis was conducted by using high performance liquid chromatography-diode array detection (HPLC-DAD). The recovery of mrricetin in safflower and in the flowers of A. manihot ranged from 79.82% to 83.91%, 81.50% to 84.32%, respectively. These results indicated that MIPs can be applied to the extraction and separation of myricetin from various complex matrixes.


Asunto(s)
Flavonoides/aislamiento & purificación , Impresión Molecular/métodos , Preparaciones de Plantas/química , Extracción en Fase Sólida/métodos , Adsorción , Cromatografía Líquida de Alta Presión , Compuestos Epoxi/química , Flavonoides/química , Metacrilatos/química
4.
J Chromatogr A ; 1571: 165-175, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30115386

RESUMEN

In this work, a novel dendritic stationary phase was synthesized by the repeated grafting of 1,4-butanediol diglycidyl ether (BDDE) and dopamine (DA) on the surface of silica for performing mixed-mode high-performance liquid chromatography (MHPLC). Elemental analysis (EA), thermogravimetric analysis (TGA) and Fourier transform infrared spectrometry (FT-IR) showed the successful preparation of the dendritic stationary phase. The prepared stationary phase showed the retention mechanisms of reversed-phase liquid chromatography (RPLC), hydrophilic interaction chromatography (HILIC) and ion-exchange chromatography (IEC) under different mobile phase conditions. In detail, alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs) and hydrophobic positional isomers were separated successfully in the RPLC mode. The baseline separation of nucleobases, nucleosides and flavonoids was achieved under HILIC mode, respectively. Meanwhile, some acidic and basic analytes were used to evaluate the IEC mode. The effects of different chromatographic conditions, such as acetonitrile content, salt concentration and pH in the mobile phase, on the different chromatographic modes were also investigated. In addition, the application of the mixed-mode dendritic stationary phase was demonstrated by the analysis of traditional Chinese medicine (TCM), including Carthamus tinctorius L. and Abelmoschus manihot (Linn.) Medicus. Interestingly, the stationary phase also has the ability for the capture and separation of boric acids. These meaningful applications confirmed that the mixed-mode dendritic stationary phase can be potentially applied in the analysis of complex samples.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Dendrímeros/química , Dopamina/química , Hidrocarburos Policíclicos Aromáticos/análisis , Ácidos Bóricos/análisis , Ácidos Bóricos/aislamiento & purificación , Cromatografía por Intercambio Iónico , Cromatografía de Fase Inversa , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/aislamiento & purificación , Flavonoides/análisis , Flavonoides/aislamiento & purificación , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Nucleósidos/análisis , Nucleósidos/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
5.
J Sep Sci ; 40(12): 2629-2637, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28453223

RESUMEN

Nano-sized molecularly imprinted polymers for tiliroside were successfully prepared by a precipitation polymerization method. Acrylamide, ethylene glycol dimethacrylate, azobisisobutyronitrile, and acetonitrile/dimethyl sulfoxide were used as functional monomer, cross-linker, initiator, and porogen, respectively. The structural features and morphological characterization of tiliroside-imprinted polymers were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The adsorption experiments indicated that the tiliroside-imprinted polymers exhibited high selective recognition property to tiliroside. Scatchard analysis indicated that the homogeneous-binding sites were formed in the polymers. The selectivity test revealed that the adsorption capacity and selectivity of polymers to tiliroside was significantly higher than that of rutin, astragalin, and kaempferol. Finally, the tiliroside-imprinted polymers were employed as adsorbents in solid-phase extraction for the extraction of tiliroside from the ethyl acetate extract of the flowers of Edgeworthia gardneri (wall.) Meisn. The results demonstrated that the extraction recoveries of tiliroside ranged from 69.3 to 73.5% by using tiliroside-imprinted polymers coupled with solid-phase extraction method. These results indicated that the tiliroside-based molecularly imprinted solid-phase extraction method was proven to be an effective technique for the separation and enrichment of tiliroside from natural medicines.


Asunto(s)
Flavonoides/aislamiento & purificación , Flores/química , Impresión Molecular , Thymelaeaceae/química , Adsorción , Cromatografía Líquida de Alta Presión , Polímeros , Extracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA