Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537442

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE: To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS: Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS: The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION: Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.


Asunto(s)
Flavonoides , Hipertensión Arterial Pulmonar , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Medicina Tradicional China/métodos
2.
Drug Discov Today ; 29(2): 103875, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176674

RESUMEN

N6-methyladenosine (m6A) is considered to be the most common and abundant epigenetics modification in messenger RNA (mRNA) and noncoding RNA. Abnormal modification of m6A is closely related to the occurrence, development, progression, and prognosis of cancer. m6A regulators have been identified as novel targets for anticancer drugs. Natural products, a rich source of traditional anticancer drugs, have been utilized for the development of m6A-targeting drugs. Here, we review the key role of m6A modification in cancer progression and explore the prospects and structural modification mechanisms of natural products as potential drugs targeting m6A modification for cancer treatment.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Medicina Tradicional , Adenosina , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
Front Cell Infect Microbiol ; 12: 969526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051242

RESUMEN

The gut dysbiosis has emerged as a prominent player in the pathogenesis and development of colorectal cancer (CRC), which in turn intensifies dysregulated gut microbiota composition and inflammation. Since most drugs are given orally, this dysbiosis directly and indirectly impinges the absorption and metabolism of drugs in the gastrointestinal tract, and subsequently affects the clinical outcome of patients with CRC. Herbal medicine, including the natural bioactive products, have been used traditionally for centuries and can be considered as novel medicinal sources for anticancer drug discovery. Due to their various structures and pharmacological effects, natural products have been found to improve microbiota composition, repair intestinal barrier and reduce inflammation in human and animal models of CRC. This review summarizes the chemo-preventive effects of extracts and/or compounds derived from natural herbs as the promising antineoplastic agents against CRC, and will provide innovative strategies to counteract dysregulated microbiota and improve the lives of CRC patients.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/prevención & control , Disbiosis/prevención & control , Medicina de Hierbas , Humanos , Inflamación
4.
Biomed Res Int ; 2022: 7713355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224100

RESUMEN

Codonopsis lanceolata is a perennial smelly herbaceous plant and widely employed for the treatment of various lung cancer and inflammation. However, the anticancer substances in C. lanceolata and their underlying mechanisms had not been well clarified. In this study, six compounds were obtained from the water extracts of C. lanceolata polyacetylenes (CLP) and then identified as syringin, codonopilodiynoside A, lobetyol, isolariciresinol, lobetyolin, and atractylenolide III. Treatment with CLP remarkably suppressed the cell proliferation, colony formation, migration, and invasion of A549 cells. Synergistic effects of lobetyolin and lobetyol were equivalent to the antiproliferative activities of CLP, while other compounds did not have any inhibition on the viabilities of A549 cells. CLP also reduced the expression of Ras, PI3K, p-AKT, Bcl-2, cyclin D1, and CDK4 but increased the expression of Bax, GSK-3ß, clv-caspase-3, and clv-caspase-9, which could be reversed by the PI3K activator 740YP. Furthermore, CLP retarded the growths of tumor and lung pathogenic bacteria in mice. It demonstrated that lobetyolin and lobetyol were the main antitumor compounds in C. lanceolata. CLP induced cell apoptosis of lung cancer cells via inactivation of the Ras/PI3K/AKT pathway and ameliorated lung dysbiosis, suggesting the therapeutic potentials for treating human lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Codonopsis , Medicamentos Herbarios Chinos/farmacología , Disbiosis/tratamiento farmacológico , Fitoterapia/métodos , Polímero Poliacetilénico/farmacología , Animales , Apoptosis/efectos de los fármacos , Humanos , Masculino , Ratones Desnudos , Raíces de Plantas/química , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA