Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 284: 114783, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34715300

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Capsella bursa-pastoris (L.) Medic. (CBP) is a cruciferous plant valuable in reducing fever, improving eyesight and calming the liver. This herb was recorded in the Compendium of Materia Medica for cataract treatment. AIM OF THE STUDY: To determine the effects and mechanism of CBP on cataract prevention and treatment using a selenite cataract model. MATERIALS AND METHODS: The main compounds in CBP extract were analyzed by UPLC, 1H-NMR and 13C-NMR spectroscopic techniques. Flavonoids formed a significant proportion of its compounds, thus necessitating an evaluation of their inhibitory effects on the development of cataract using a selenite cataract model. The protective effects of CBP flavonoids (CBPF) against oxidative damage and the modulation of mitochondrial apoptotic pathway were subsequently verified on H2O2-treated SRA01/04 lens epithelial cells. RESULTS: CBPF significantly alleviated the development of cataract by decreasing the MDA level and increasing the GSH-Px and SOD levels in the lens. It also inhibited H2O2-induced apoptosis in SRA01/04 cells, increased the expression of Bcl-2 protein and decreased the expressions of Caspase-3 and Bax proteins. CONCLUSION: CBPF exerts a significant preventive effect on cataract development by regulating the mitochondrial apoptotic pathway of the lens epithelial cells. It is thus a potent traditional Chinese medicine (TCM) whose application should be further developed for the clinical treatment of cataract.


Asunto(s)
Capsella/química , Catarata/prevención & control , Células Epiteliales/efectos de los fármacos , Cristalino/citología , Fitoterapia , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Caspasa 3/genética , Caspasa 3/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno , Malondialdehído/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4654-4665, 2021 Sep.
Artículo en Chino | MEDLINE | ID: mdl-34581073

RESUMEN

Compounds derived from natural products present satisfactory efficacy in disease prevention and treatment. The use of chemical substances in plants to promote healthhas increasingly attracted people's attention. Rutin, a typical flavonoid, is mainly found in various vegetables, fruits and Chinese herbal medicines. As a natural antioxidant, it features many pharmacological activities, such as anti-inflammation, anti-virus, anti-tumor, and prevention and treatment of cardiovascular and cerebrovascular diseases. However, the low bioavailability and poor water solubility limit its clinical application. In view of this, its structure is optimized and modified to afford rutin derivatives with good solubility, high bioavailability, stable metabolism and small toxic side effects. So far, a large number of rutin ethers, esters, and complexes have been synthesized and undergone activity testing. This paper reviews the structural modification of rutin in recent years, and the obtained derivatives have excellent properties and significant biological activity.


Asunto(s)
Antiinflamatorios , Rutina , Antioxidantes , Disponibilidad Biológica , Humanos , Solubilidad
3.
J Food Drug Anal ; 27(3): 793-804, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31324295

RESUMEN

Jinzhen oral liquid (JZ) is a classical traditional Chinese medicine formula used for the treatment of children lung disease. However, the effective substance of JZ is still unclear. In this study, we used lung injury rat model to study the protective effect of JZ, through UPLC-Q-TOF/MS detection coupled with metabolic research and network pharmacology analysis. Fortunately, 31 absorbed prototype constituents and 41 metabolites were identified or tentatively characterized based on UPLC-Q-TOF/MS analysis, and the possible metabolic pathways were hydroxylation, sulfation and glucuronidation. We optimized the data screening in the early stage of network pharmacology by collecting targets based on adsorbed constituents, and further analyzed the main biological processes and pathways. 24 selected core targets were frequently involved in reactive oxygen species metabolic process, dopaminergic synapse pathway and so on, which might play important roles in the mechanisms of JZ for the treatment of lung injury. Overall, the absorbed constituents and their possible metabolic pathways, as well as the absorbed constituent-target-disease network provided insights into the mechanisms of JZ for the treatment of lung injury. Further studies are needed to validate the biological processes and effect pathways of JZ.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/farmacología , Lesión Pulmonar/tratamiento farmacológico , Redes y Vías Metabólicas/efectos de los fármacos , Administración Oral , Animales , Cromatografía Líquida de Alta Presión , Biología Computacional , Medicamentos Herbarios Chinos/administración & dosificación , Lesión Pulmonar/metabolismo , Masculino , Medicina Tradicional China , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA