Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 114(5): 930-954, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408117

RESUMEN

Sustainable production of pome fruit crops is dependent upon having virus-free planting materials. The production and distribution of plants derived from virus- and viroid-negative sources is necessary not only to control pome fruit viral diseases but also for sustainable breeding activities, as well as the safe movement of plant materials across borders. With variable success rates, different in vitro-based techniques, including shoot tip culture, micrografting, thermotherapy, chemotherapy, and shoot tip cryotherapy, have been employed to eliminate viruses from pome fruits. Higher pathogen eradication efficiencies have been achieved by combining two or more of these techniques. An accurate diagnosis that confirms complete viral elimination is crucial for developing effective management strategies. In recent years, considerable efforts have resulted in new reliable and efficient virus detection methods. This comprehensive review documents the development and recent advances in biotechnological methods that produce healthy pome fruit plants. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Productos Agrícolas , Frutas , Enfermedades de las Plantas , Viroides , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Frutas/virología , Productos Agrícolas/virología , Viroides/genética , Viroides/fisiología , Virus de Plantas/fisiología , Biotecnología/métodos , Prunus domestica/virología
2.
Appl Microbiol Biotechnol ; 102(24): 10743-10754, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30291368

RESUMEN

Availability of and easy access to diverse plant viruses and viroids is a prerequisite in applied and basic studies related to viruses and viroids. Long-term preservation of viruses and viroids is difficult. A protocol was described for long-term preservation of potato leafroll virus (PLRV), potato virus S (PVS), and potato spindle tuber viroid (PSTVd) in cryopreserved shoot tips of potato cv. Zihuabai. Shoot regrowth levels following cryopreservation were higher in 1.5 mm-shoot tips (58-60%) than in 0.5-mm-ones (30-38%). All shoots recovered from 0.5-mm-shoot tips were PVS- and PSTVd-preserved, but none of them were PLRV-preserved. Cryopreservation of 1.5-mm-shoot tips resulted in 35% and 100% of PLRV- and PVS- and PSTVd-preserved shoots. Studies on cell survival patterns and virus localization provided explanations to the varying PLRV-preservation frequencies produced by cryopreservation of the two sizes of shoot tips. Although micropropagation efficiencies were low after 12 weeks of subculture following cryopreservation, similar efficiencies were obtained after 16 weeks of subculture in pathogen-preserved shoots recovered from cryopreservation, compared with the diseased in vitro stock shoots (the control). Pathogen concentrations in the three pathogens-preserved shoots analyzed by qRT-PCR were similar to those in micropropagated shoots. The three pathogens cryopreserved in shoot tips were readily transmitted by grafting and mechanical inoculation to potato plants. PLRV, PVS, and PSTVd represent a diverse range of plant viruses and viroid in terms of taxonomy and infectious ability. Therefore, shoot tip cryopreservation opens a new avenue for long-term preservation of the virus and viroid.


Asunto(s)
Carlavirus , Luteoviridae , Brotes de la Planta/virología , Solanum tuberosum/virología , Viroides , Carlavirus/genética , Regulación Viral de la Expresión Génica , Luteoviridae/genética , Enfermedades de las Plantas/virología , Patología de Plantas , Brotes de la Planta/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Viroides/genética
3.
Plant Methods ; 14: 87, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323856

RESUMEN

Production of virus-free plants is necessary to control viral diseases, import novel cultivars from other countries, exchange breeding materials between countries or regions and preserve plant germplasm. In vitro techniques represent the most successful approaches for virus eradication. In vitro thermotherapy-based methods, including combining thermotherapy with shoot tip culture, chemotherapy, micrografting or shoot tip cryotherapy, have been successfully established for efficient eradication of various viruses from almost all of the most economically important crops. The present study reviewed recent advances in in vitro thermotherapy-based methods for virus eradication since the twenty-first century. Mechanisms as to why thermotherapy-based methods could efficiently eradicate viruses were discussed. Finally, future prospects were proposed to direct further studies.

4.
Plant Dis ; 102(8): 1574-1580, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30673422

RESUMEN

Apple stem grooving virus (ASGV), a difficult-to-eradicate virus from apple propagative materials, causes serious damage to apple production. The use of virus-free plants has been and is an effective strategy for control of plant viral diseases. This study aimed to eradicate ASGV from virus-infected in-vitro-cultured shoots of four apple cultivars and one rootstock by combining thermotherapy with cryotherapy. In vitro stock shoots infected with ASGV were thermo-treated using an alternating temperature of 36°C (day) and 32°C (night). Shoot tips were excised from the treated stock shoots and subjected to cryotherapy. Results showed that, although thermotherapy did not influence shoot survival rates, it reduced shoot growth and proliferation of in vitro shoots. Shoot regrowth rates decreased while virus eradication frequencies increased in cryo-treated shoot tips as time durations of thermotherapy increased from 0 to 6 weeks. Shoot regrowth and frequency of virus eradication were positively and negatively correlated, respectively, with the size of shoot tips. The protocol established here yielded shoot regrowth rates and virus eradication frequencies of 33 to 76% and 30 to 100%, respectively, in the four apple cultivars and one rootstock. Thermotherapy altered virus distribution patterns, subsequently resulting in production of a larger virus-free area in the thermo-treated shoot tips. Many cells in the top layers of apical dome and some cells in the youngest leaf primordia survived in cryo-treated shoot tips; these cells were most likely free of virus infection. Thus, plants regenerated from the procedure of combining thermotherapy with cryotherapy were free of ASGV, as judged by reverse-transcription polymerase chain reaction. To the best of our knowledge, this is the widest-spectrum technique reported thus far for the production of ASGV-free plants and provides a novel biotechnology for the production of virus-free plants in Malus spp.


Asunto(s)
Flexiviridae/fisiología , Malus/virología , Enfermedades de las Plantas/virología , Brotes de la Planta/virología , Supervivencia Celular/fisiología , Congelación , Malus/citología , Brotes de la Planta/citología , Temperatura , Técnicas de Cultivo de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA