RESUMEN
INTRODUCTION: Targeted protein degradation represents a promising therapeutic approach, while diabetic cardiomyopathy (DCM) arises as a consequence of aberrant insulin secretion and impaired glucose and lipid metabolism in the heart.. OBJECTIVES: Considering that the Toll-like receptor 9 (TLR9) signaling pathway plays a pivotal role in regulating energy metabolism, safeguarding cardiomyocytes, and influencing glucose uptake, the primary objective of this study was to investigate the impact of TLR9 on diabetic cardiomyopathy (DCM) and elucidate its underlying mechanism. METHODS: Mouse model of DCM was established using intraperitoneal injection of STZ, and mice were transfected with adeno-associated virus serotype 9-TLR9 (AAV9-TLR9) to assess the role of TLR9 in DCM. To explore the mechanism of TLR9 in regulating DCM disease progression, we conducted interactome analysis and employed multiple molecular approaches. RESULTS: Our study revealed a significant correlation between TLR9 expression and mouse DCM. TLR9 overexpression markedly mitigated cardiac dysfunction, myocardial fibrosis, oxidative stress, and apoptosis in DCM, while inflammation levels remained relatively unaffected. Mechanistically, TLR9 overexpression positively modulated mitochondrial bioenergetics and activated the AMPK-PGC1a signaling pathway. Furthermore, we identified Triad3A as an interacting protein that facilitated TLR9's proteasomal degradation through K48-linked ubiquitination. Inhibiting Triad3A expression improved cardiac function and pathological changes in DCM by enhancing TLR9 activity. CONCLUSIONS: The findings of this study highlight the critical role of TLR9 in maintaining cardiac function and mitigating pathological alterations in diabetic cardiomyopathy. Triad3A-mediated regulation of TLR9 expression and function has significant implications for understanding the pathogenesis of DCM. Targeting TLR9 and its interactions with Triad3A may hold promise for the development of novel therapeutic strategies for diabetic cardiomyopathy. Further research is warranted to fully explore the therapeutic potential of TLR9 modulation in the context of cardiovascular diseases.
RESUMEN
Background: Therapeutic effects of electrical cranial stimulation (CES) in patients suffering from anxiety remained unclear. This meta-analysis aimed at investigating acceptability and therapeutic efficacy of CES against anxiety, depression, and insomnia for patients who experienced symptoms of anxiety. Methods: Major electronic databases were searched from inception until December 10, 2022 for randomized controlled trials (RCT) focusing on therapeutic effectiveness of CES in patients whose primary complaints included anxiety. Effect sizes (ES) for different treatment outcomes were estimated by using generic inverse variance method. Results: Eight RCTs were identified including a total of 337 participants. The therapeutic effectiveness of CES was significantly better than that in the control groups for anxiety (ES=-0.96, p <0.00001, eight trials, 337 patients), depression (ES=-0.69, p=0.003, five trials), and insomnia (ES=-1.02, p = 0.0006, three trials) in those who presented with symptoms of anxiety. Subgroup analyses found that CES was equally effective regardless of comorbid presentation of depressive symptoms (ES=-0.94 in patients with anxiety only vs. ES=-1.06 in those with depression and anxiety) and whether CES was used as monotherapy or add-on therapy to medications (ES = -0.88 vs. ES = -1.12, respectively). Moreover, subgroup analysis of RCTs using the same device "Alpha-Stim" for CES was more effective in alleviating anxiety than sham controls (ES = -0.88, p < 0.00001, four trials, 230 patients). Regarding acceptability, the use of CES did not increase the risk of treatment-related dropout compared to the control group (RR = 1.26, p = 0.57, I2 = 0%, four trials, 324 patients). Conclusion: Our study supported the use of CES for symptoms of anxiety, depression, and insomnia in those suffering from anxiety with fair acceptability and demonstrated the efficacy of "Alpha-Stim", the most commonly used device for CES, in this patient population. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42022382619.
RESUMEN
Salidroside, a prominent active ingredient in traditional Chinese medicines, is garnering increased attention because of its unique pharmacological effects against ischemic heart disease via MAPK signaling, which plays a critical role in regulating the evolution of ventricular hypertrophy. However, the function of Salidroside on myocardial hypertrophy has not yet been elucidated. C57BL/6 mice were subjected to transverse aortic constriction (TAC), and treated with Salidroside (100 mg kg-1 day-1 ) by oral gavage for 3 weeks starting 1 week after surgery. Four weeks after TAC surgery, the mice were subjected to echocardiography and then sacrificed to harvest the hearts for analysis. For in vitro study, neonatal rat cardiomyocytes were used to validate the protective effects of Salidroside in response to Angiotensin II (Ang II, 1 µM) stimulation. Here, we proved that Salidroside dramatically inhibited hypertrophic reactions generated by pressure overload and isoproterenol (ISO) injection. Salidroside prevented the activation of the TAK1-JNK/p38 axis. Salidroside pretreatment of TAK1-inhibited cardiomyocytes shows no additional attenuation of Ang II-induced cardiomyocytes hypertrophy and signaling pathway activation. The overexpression of constitutively active TAK1 removed the protective effects of Salidroside on myocardial hypertrophy. TAC-induced increase of TLR4 protein expression was reduced considerably in the Salidroside treated mice. Transient transfection of small interfering RNA targeting TLR4 (siTLR4) in cardiomyocytes did not further decrease the activation of the TAK1/JNK-p38 axis. In conclusion, Salidroside functioned as a TLR4 inhibitor and displayed anti-hypertrophic action via the TAK1/JNK-p38 pathway.
Asunto(s)
Estenosis de la Válvula Aórtica , Cardiomegalia , Receptor Toll-Like 4 , Animales , Ratones , Ratas , Estenosis de la Válvula Aórtica/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/farmacología , Ratones Endogámicos C57BL , Miocitos Cardíacos , Transducción de Señal , Receptor Toll-Like 4/metabolismoRESUMEN
Colitis is a common and complex intestinal inflammatory disease in which lactate, a metabolite of anaerobic glycolysis, plays a crucial role. Our study aimed to investigate the alleviated effect of lactate in colitis, and to provide a nutritional measure to alleviate colitis injury. The variations in colonic lactate in piglets with DSS-induced colitis were investigated in Experiment 1 (Exp.1). Thirty weaned pigs were allotted into three groups and sampled at different stages of DSS-induced colitis (days 0, 5, and 7). The colonic level of lactate and interleukin 10 (IL-10) was significantly decreased on day 5 when compared to day 0. Colonic lactate, IL-10, and G protein receptor 81 (GPR81) levels were significantly increased on day 7 when compared to day 5. Sixty weaned piglets were assigned to control (basal diet), DSS (basal diet with DSS gavage), or lactate (2% lactate supplementation diet with DSS gavage) groups to investigate the effects of lactate on DSS-induced colitis in Experiment 2 (Exp.2). Lactate reduced the disease activity index (DAI), DSS-induced impairment of colonic structure in response to the critical inflammatory cytokines interleukin 1ß (IL-1ß) and interleukin 18 (IL-18) when compared with the DSS group. Furthermore, GPR-81 levels, colonic M2 macrophages, and IL-10 levels, the colonic antioxidant capacity, colonic butyrate levels were increased, and eventually improved growth performance post-colitis. The results of this study show that lactate was decreased at the peak of colitis, accumulated in subsidized colitis. Furthermore, dietary lactate supplementation helped to alleviate DSS-induced colitis injury.
Asunto(s)
Colitis , Suplementos Dietéticos , Ácido Láctico , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Interleucina-10 , Ácido Láctico/uso terapéutico , PorcinosRESUMEN
INTRODUCTION: Child-centered play therapy (CCPT) is a practical and recommended non-medication intervention for children with Attention-deficit/hyperactivity disorder (ADHD) but the mechanism in between is unclear. AIM: This study proposed to examine the effectiveness of CCPT on neuropsychological deficits and behavioral symptoms in ADHD. METHODS: Participants with ADHD diagnosis were referred from senior child and adolescent psychiatrists, and typical developmental children (TD) were recruited from community as a control group. All participants' executive functions were evaluated using Cambridge Neuropsychological Test Automated Battery. First of all, the participants were evaluated using Child Behavior Checklist (CBCL) by their parents. The ADHD participants were assigned into CCPT (ADHDc) and waitlist (ADHDw) group; and the ADHDc group then received CCPT weekly for 12 sessions, while the ADHDw continuously received their regular treatment (i.e., medication treatment or other alternative treatments) as usual. RESULTS: Total 52 participants were recruited (17 with ADHD and 35 typically developed children, TD). The results showed that overall the ADHD groups had worse neuropsychological performance and more behavioural disturbance than did the TD (ps < .05). After receiving the CCPT, the results showed that the ADHDc group had significant improvement in the cognitive flexibility (p < .05); while the ADHDw group had no changes.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Función Ejecutiva , Ludoterapia , Déficit de la Atención y Trastornos de Conducta Disruptiva , PadresRESUMEN
BACKGROUND: As the king of all herbs, the medicinal value of ginseng is self-evident. The perennial nature of ginseng causes its quality to be influenced by various factors, one of which is the soil environment. During plant growth and development, MYB transcription factors play an important role in responding to abiotic stresses and regulating the synthesis of secondary metabolites. However, there are relatively few reports on the MYB transcription factor family in Panax ginseng. RESULTS: This study identified 420 PgMYB transcripts under 117 genes ID in the Jilin ginseng transcriptome database. Phylogenetic analysis showed that PgMYB transcripts in Jilin ginseng were classified into 19 functional subclasses. The GO annotation result indicated that the functional differentiation of PgMYB transcripts was annotated to 11 functional nodes at GO Level 2 in ginseng. Expression pattern analysis of PgMYB transcripts based on the expression data (TPM) that PgMYB transcripts were revealed spatiotemporally specific in expression patterns. We performed a weighted network co-expression network analysis on the expression of PgMYB transcripts from different samples. The co-expression network containing 51 PgMYB transcripts was formed under a soft threshold of 0.85, revealing the reciprocal relationship of PgMYB in ginseng. Treatment of adventitious roots of ginseng with different concentrations of NaCl revealed four up-regulated expression of PgMYB transcripts that can candidate genes for salt resistance studies in ginseng. CONCLUSIONS: The present findings provide data resources for the subsequent study of the functions of MYB transcription factor family members in ginseng, and provide an experimental basis for the anti-salt functions of MYB transcription factors in Panax ginseng.
Asunto(s)
Panax , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Cloruro de Sodio/metabolismo , Suelo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Gilles de la Tourette's Syndrome (TS) is a childhood-onset disease with clinical features of motor and phonic tics. Yi-Gan-san (YGS) is a traditional Chinese medicine formula that can reduce aggressiveness and agitation and inhibit dopamine function. This study investigated the effects of YGS on the psychiatric behavior of children and adolescents with TS. METHODS: A double-blind, randomized, controlled preliminary study was conducted. A total of 38 patients with TS were assigned to the control group (CG, 19 patients) who received the oral administration of YGS placebo (90% starch and 10% YGS; 2.5 g thrice daily) or to a treatment group (TG, 19 patients) who received YGS for 4 weeks. The primary outcome measure was the change in Yale Global Tic Severity Scale (YGTSS) overall and subscale scores. RESULTS: The intensity score for phonic tics before oral administration of YGS, and after 2 weeks, 3 weeks and 4 weeks was not significantly different between CG and TG groups (2.94 ± 1.14 vs 2.79 ± 1.08, p = .686; 2.29 ± 1.21 vs 1.95 ± 1.08, p = .370; 2.41 ± 1.18 vs 2.05 ± 1.51, p = .435; and 2.29 ± 1.26 vs 1.84 ± 1.42, p = .323, respectively), while the intensity score for phonic tics after 1-week oral administration of YGS in the TG was 1.89 ± 1.10 lower than 3.06 ± 1.39 in the CG (p = .008). CONCLUSION: Oral administration of YGS for 1 week only reduced the intensity of phonic tics compared with oral administration of YGS placebo, suggesting that YGS can reduce their intensity for a short period, and the compliance of oral administration of YGS for 4 weeks can be accepted in children and adolescents with Tourette's Syndrome. However, because this study was preliminary, the selection of an appropriate placebo and dosage and long-term observations are crucial areas for future studies.
Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Síndrome de Tourette/tratamiento farmacológico , Adolescente , Conducta del Adolescente/efectos de los fármacos , Niño , Conducta Infantil/efectos de los fármacos , Método Doble Ciego , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/efectos adversos , Femenino , Humanos , Masculino , Tics/tratamiento farmacológicoRESUMEN
Accumulating evidences demonstrate that fermented feed and liquid feeding exerted a great beneficial influence on growth performance and health in the pig industry. This experiment was conducted to evaluate the effects of fermented liquid feeding on the growth performance and intestinal function of pigs. Two hundred and eighty-eight 27-day-old weaned piglets (8.21 ± 0.27 kg) were randomly allocated to a control group (basal diet (CON)), an antibiotic group (basal diet supplemented with antibiotics (AB)) and a fermented liquid feeding group (basal diet with fermented liquid feeding (FLF)), with 6 replicates per treatment and 16 weaned piglets per replicate. The experiment lasted for 160 days. Fresh fecal samples were collected to evaluate the apparent total tract digestibility (ATTD) of nutrients from the last 4 days of each stage. The results are shown as follows: (1) Compared with the CON group, in the whole stage, the FLF diet significantly increased the final body weight (BW) and ADG of pigs (P < 0.05), and had a tendency to increase ADFI (P = 0.086), but had no effect on F/G. (2) The ATTD of dry matter (DM), crude protein (CP), ether extract (EE), crude ash (CA), crude fiber (CF), gross energy (GE), calcium (Ca) and total phosphorus (TP) in the FLF group was significantly elevated compared with those of the CON group at 8-20 kg stage (P < 0.05). Meanwhile, the ATTD of EE in the FLF group was significantly increased compared with that of the CON group at the 50-75 kg and 100-125 kg stages (P < 0.05), and the ATTD of Ca was higher than that of CON group at the 100-125 kg stage (P < 0.05). (3) Compared with that of the CON group, the level of serum leptin in the FLF group had a tendency to decrease (P = 0.054), the level of serum ghrelin in the FLF group was significantly elevated (P < 0.05) and the level of serum peptide YY in the FLF group was significantly decreased (P < 0.05). (4) The abundance of Lactobacillus in cecal and colonic digesta was observably enhanced in FLF group. Meanwhile, the abundance of Escherichia coli in cecal and colonic digesta were dramatically reduced in the FLF group compared with that in the CON and AB groups (P < 0.05). (5) The levels of acetic acid in colonic digesta were significantly increased in the FLF group (P < 0.05), and an increasing trend was observed in total VFA in colonic digesta compared with CON (P < 0.1). The levels of acetic acid in colonic digesta were significantly promoted in the FLF group compared with that of the AB group (P < 0.05). In conclusion, these results indicate that fermented liquid feeding improved the growth performance of pigs, which might be associated with gastrointestinal hormone and intestinal functions.
RESUMEN
Although the potential threats of metallic oxide nanoparticles (MNPs) to constructed wetland (CW) have been broadly reported, limited information is available regarding the long-term impact of nickel oxide nanoparticles (NiO NPs) on CWs at the environmentally relevant concentrations. Here, we comprehensively elucidated the responses in the treatment performance, enzyme activities, microbial properties, metabolic pathways and functional genes of CWs to chronic exposure of NiO NPs (0.1 and 1 mg/L) for 120 days, with a quantitative analysis on the fate and migration of NiO NPs within CWs. Nitrogen removal evidently declined under the long-term exposure to NiO NPs. Besides, NiO NPs induced a deterioration in phosphorus removal, but gradually restored over time. The activities of dehydrogenase (DHA), phosphatase (PST), urease (URE), ammonia oxygenase (AMO) and nitrate reductase (NAR) were inhibited to some extent under NiO NPs stress. Furthermore, NiO NPs exposure reduced bacterial diversity, shifted microbial composition and obviously inhibited the transcription of the ammonia oxidizing and denitrifying functional genes. The results of nickel mass balance indicated that the major removal mechanism of NiO NPs in CWs was through substrate adsorption and plants uptake. Thus, the ecological impacts of prolonged NiO NPs exposure at environmental concentrations should not be neglected.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Redes y Vías Metabólicas , Nanopartículas del Metal/toxicidad , Nitrógeno , Fósforo , Eliminación de Residuos Líquidos , HumedalesRESUMEN
6-Gingerol, a pungent ingredient of ginger, has been reported to possess anti-inflammatory and antioxidant activities, but the effect of 6-gingerol on pressure overload-induced cardiac remodeling remains inconclusive. In this study, we investigated the effect of 6-gingerol on cardiac remodeling in in vivo and in vitro models, and to clarify the underlying mechanisms. C57BL/6 mice were subjected to transverse aortic constriction (TAC), and treated with 6-gingerol (20 mg/kg, ig) three times a week (1 week in advance and continued until the end of the experiment). Four weeks after TAC surgery, the mice were subjected to echocardiography, and then sacrificed to harvest the hearts for analysis. For in vitro study, neonatal rat cardiomyocytes and cardiac fibroblasts were used to validate the protective effects of 6-gingerol in response to phenylephrine (PE) and transforming growth factor-ß (TGF-ß) challenge. We showed that 6-gingerol administration protected against pressure overload-induced cardiac hypertrophy, fibrosis, inflammation, and dysfunction in TAC mice. In the in vitro study, we showed that treatment with 6-gingerol (20 µM) blocked PE-induced-cardiomyocyte hypertrophy and TGF-ß-induced cardiac fibroblast activation. Furthermore, 6-gingerol treatment significantly decreased mitogen-activated protein kinase p38 (p38) phosphorylation in response to pressure overload in vivo and extracellular stimuli in vitro, which was upregulated in the absence of 6-gingerol treatment. Moreover, transfection with mitogen-activated protein kinase kinase 6 expressing adenoviruses (Ad-MKK6), which specifically activated p38, abolished the protective effects of 6-gingerol in both in vitro and in vivo models. In conclusion, 6-gingerol improves cardiac function and alleviates cardiac remodeling induced by pressure overload in a p38-dependent manner. The present study demonstrates that 6-gingerol is a promising agent for the intervention of pathological cardiac remodeling.
Asunto(s)
Cardiomegalia/prevención & control , Cardiotónicos/uso terapéutico , Catecoles/uso terapéutico , Alcoholes Grasos/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Antiinflamatorios/uso terapéutico , Cardiomegalia/patología , Fibroblastos/efectos de los fármacos , Fibrosis/prevención & control , Inflamación/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Fenilefrina/farmacología , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The need for the discovery of new antibiotics and solving the antibiotic resistance problem requires rapid detection of antibiotics, identification of known antibiotics, and prediction of antibiotic mechanisms. The bacterial lux genes encode proteins that convert chemical energy into photonic energy and lead to bioluminescence. Exploiting this phenomenon, we constructed a lux-based bioluminescence system in Staphylococcus aureus by expressing lux genes under the control of stress-inducible chaperon promoters. When experiencing antibiotic stress, these constructed reporter strains showed clear bioluminescence response. Therefore, this bioluminescence screening system can be used for the detection of antibiotics in unknown chemical mixtures. Further analysis of bioluminescence response patterns showed that: (1) these bioluminescence response patterns are highly antibiotic specific and therefore can be used for rapid and cheap identification of antibiotics; and that (2) antibiotics having the same mechanism of action have similar bioluminescence patterns and therefore these patterns can be used for the prediction of mechanism for an unknown antibiotic with good sensitivity and specificity. With this bioluminescence screening assay, the discovery and analysis of new antibiotics can be promoted, which benefits in solving the antibiotic resistance problem.
Asunto(s)
Antibacterianos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Mediciones Luminiscentes/métodos , Pruebas de Sensibilidad Microbiana/métodos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismoRESUMEN
Silver nanoparticles (AgNPs) have been widely used in many fields, which raised concerns about potential threats to biological sewage treatment systems. In this study, the phosphorus removal performance, enzymatic activity and microbial population dynamics in constructed wetlands (CWs) were evaluated under a long-term exposure to AgNPs (0, 50, and 200 µg/L) for 450 days. Results have shown that AgNPs inhibited the phosphorus removal efficiency in a short-term exposure, whereas caused no obviously negative effects from a long-term perspective. Moreover, in the coexisting CW system of AgNPs and phosphorus, competition exhibited in the initial exposure phase, however, cooperation between them was observed in later phase. Enzymatic activity of acid-phosphatase at the moderate temperature (10-20°C) was visibly higher than that at the high temperature (20-30°C) and CWs with AgNPs addition had no appreciable differences compared with the control. High-throughput sequencing results indicated that the microbial richness, diversity and composition of CWs were distinctly affected with the extension of exposure time at different AgNPs levels. However, the phosphorus removal performance of CWs did not decline with the decrease of polyphosphate accumulating organisms (PAOs), which also confirmed that adsorption precipitation was the main way of phosphorus removal in CWs. The study suggested that AgNPs and phosphorus could be removed synergistically in the coexistence system. This work has some reference for evaluating the influences of AgNPs on the phosphorus removal and the interrelation between them in CWs.
Asunto(s)
Nanopartículas del Metal/toxicidad , Plata/toxicidad , Eliminación de Residuos Líquidos/métodos , Humedales , Biodegradación Ambiental/efectos de los fármacos , Fósforo/análisis , Fósforo/metabolismo , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidadRESUMEN
BACKGROUND: Anesthesia-induced neurotoxicity may cause permanent dysfunctions in human brains. In this work, we used a cell-based in-vitro model to demonstrate that traditional Chinese medicine, Kami-Shoyo-San may protect ketamine-induced neuronal apoptosis in human embryonic stem cell-differentiated neurons. METHODS: Human embryonic stem cell-differentiated neurons were cultured in vitro and treated with high-concentration ketamine to induce neuronal apoptosis. Pre-incubation of Kami-Shoyo-San was conducted to evaluate its neuroprotection on ketamine-injured neurons. Quantitative real-time PCR and western blot assays were used to assess brain-derived neurotrophic factor and its receptor, tropomyosin receptor kinase B, in response to Kami-Shoyo-San and ketamine treatment. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling pathway was then deactivated, by siRNA application, to further explore its functional role in Kami-Shoyo-San-mediated protection on ketamine-induced apoptosis among human embryonic stem cell-differentiated neurons. RESULTS: High concentration of ketamine-induced significant apoptosis, whereas pre-incubation of Kami-Shoyo-San markedly rescued ketamine-induced apoptosis, in human embryonic stem cell-differentiated neurons. Kami-Shoyo-San activated brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling pathway by upregulating brain-derived neurotrophic factor and inducing tropomyosin receptor kinase B phosphorylation. Conversely, siRNA-mediated brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling pathway deactivation reversed the neuroprotection of Kami-Shoyo-San in ketamine-injured human embryonic stem cell-differentiated neurons. CONCLUSION: Kami-Shoyo-San could protect ketamine-induced neurotoxicity, and the underlying mechanism may involve brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling pathway.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Madre Embrionarias Humanas/efectos de los fármacos , Ketamina/toxicidad , Medicina Tradicional China , Células-Madre Neurales/efectos de los fármacos , Neuronas/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Neuronas/metabolismoRESUMEN
Great controversy still exists on the ecological effects of silver nanoparticles (AgNPs) especially at relatively low concentrations. The performance, fate of AgNPs and microbiome in CWs were evaluated under a long-term exposure to AgNPs (0, 50 and 200⯵g/L) for 450â¯days. Results showed that AgNPs (50, 200⯵g/L) caused no obviously negative effects on COD removal whereas nitrogen and phosphorus removals were slightly stimulated. AgNPs could be removed efficiently from wastewater attributed to the accumulations of soil and plant tissues. Mass balance of AgNPs was analysed and soil layer of CWs was the major sink of nanoparticles. High-throughput sequencing further revealed the impact of AgNPs on the ecological structure of CWs. Moreover, the presence of AgNPs altered the relative abundances of key functional bacteria. The ecological risks of persistent exposure to low concentrations AgNPs should not be ignored, even though it did not result in deterioration of the CWs' operating performance in our studies.
Asunto(s)
Nanopartículas del Metal , Microbiota , Humedales , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Plata/química , Suelo/química , Microbiología del Suelo , Aguas Residuales/químicaRESUMEN
Glioma is one of the most common malignant brain tumors. Current chemotherapy is far from providing satisfactory clinical outcomes for patients with glioma. More efficient drugs are urgently needed. Artesunate (ART) is clinically used as an anti-malarial agent and exhibits potent antiproliferative activity as a traditional Chinese medicine. In addition, ART has been shown to exert a profound cytotoxic effect on various tumor cell lines, presenting a novel candidate for cancer chemotherapy. However, its anticancer effect on glioma by altering cell biomechanical properties remains unclear. The present study aimed to identify the anticancer effects of ART on human glioma SHG44 cells by assessing cell proliferation, migration/invasion, the expression of claudin-1 and the biomechanical properties of ART-treated SHG44 cells. The proliferation of the SHG44 cells was assessed by MTT assay. The cell apoptosis was detected by flow cytometry. For cell migration and invasion assays, the Transwell was used. The expression of the gene claudin-1 was detected by polymerase chain reaction. The cell membrane and biomechanical properties, as targets of ART action, were investigated by atomic force microscopy (AFM). ART significantly inhibited the proliferation of SHG44 cells in a dose- and time-dependent manner. After treatment with 30 mg/l ART, the level of cell apoptosis was significantly increased (from 6.88±0.062 to 23.7±4.16%). Furthermore, the cell migration and invasion abilities of the SHG44 cells were markedly inhibited after treatment with 30 mg/l ART. Compared with the control group (0 mg/l ART), the SHG44 cells treated with 30 mg/l ART exhibited upregulated expression of claudin-1, increased adhesive force (from 2,400±300 to 3,600±500 pN), increased high connection among SHG44 cells, increased cytomembrane roughness (from 0.118±0.011 to 0.269±0.015 µm) and reduced elasticity (from 23±8 to 3.5±1.1 MPa). The present study demonstrated that ART could alter the biomechanical properties of the glioma cells to inhibit cell proliferation, migration and invasion.
Asunto(s)
Artemisininas/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/patología , Invasividad Neoplásica/patología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Artesunato , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/genética , Claudina-1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Humanos , Invasividad Neoplásica/genética , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genéticaRESUMEN
An incubation experiment was carried out to study the effect of montmorillonite on pH, the fractions and availability of phosphorus in a sandy yellow soil (SY) and a mineral flavicant soil (MF) applied with biogas residues of swine manure (BSR). The rates of montmorillonite applied were 0%, 5%, 7.5% and 10%, respectively. The results indicated that soil pH was not affected by BSR, but was significantly increased by montmorillonite. In both soils, application of BSR caused an increase in the content and proportion of Al-P during the incubation, and an increase in the content but a slight decrease in the proportion of Fe-P in later period of incubation. The concentration of O-P was not markedly changed, but its proportion was decreased by applying BSR in both soils. The changes of Ca-P varied with soils. BSR had no significant influence on Ca-P content, but decreased the proportion of Ca-P in SY, meanwhile, it increased both Ca-P content and proportion in MF. Addition of montmorillonite in soils applied with BSR decreased the contents and proportions of Al-P and O-P, and the proportion of Fe-P did not change the contents of Fe-P, but increased the content and proportion of Ca-P in SY. In MF, montmorillonite could decrease the contents and proportions of Fe-P and O-P, and the proportion of Al-P did not affect the content of Al-P, but increased the contents and proportions of Ca-P greatly. The contents of available phosphorus (A-P) were enhanced by 17.9%-38.0% and 17.1%-33.7% in SY and MF respectively, and the phosphorus activation coefficient (PVC) was significantly improved in both soils by applying BSR. The contents of A-P were reduced by 8.8%-35.5% and 1.1%-11.6% in SY and MF respectively. Correlation analysis showed that montmorillonite reduced the availability of phosphorus through increasing pH and contents of Ca-P, decreasing the content of Al-P in SY, and through increasing pH and decreasing content of Fe-P in MF. The availability of phosphorus in SY was influenced more obviously than that in MF by montmorillonite.
Asunto(s)
Bentonita/química , Fertilizantes , Estiércol , Fósforo/química , Suelo/química , Animales , PorcinosRESUMEN
Recent studies have reported that noise exposure at relatively low intensities can cause temporary threshold shifts (TTS) in hearing. However, the mechanism underlying the TTS is still on debate. Here, we report that an acoustic stimulation (100 dB SPL, white noise) induced TTS in mice, with the maximal ABR threshold elevations seen on the 4(th) day after noise exposure. On the other hand, there were no significant morphological changes in the cochlea. Further, there were paralleled changes of pre-synaptic ribbons in both the number and postsynaptic density (PSDs) during this noise exposure. The numbers of presynaptic ribbon, postsynaptic density (PSDs), and colocalized puncta correlated with the shifts of ABR thresholds. Moreover, a complete recovery of ABR thresholds and synaptic puncta was seen on the 14(th) day after the noise stimulations. Thus, our study may indicate that noise exposure can cause a decline in cochlear ribbon synapses and result in consequent hearing loss. The reduction of synaptic puncta appears reversible and may contribute to hearing restoration in mice after noise exposure.
Asunto(s)
Fatiga Auditiva , Células Ciliadas Auditivas Internas , Pérdida Auditiva Provocada por Ruido/fisiopatología , Plasticidad Neuronal , Sinapsis , Estimulación Acústica , Oxidorreductasas de Alcohol , Animales , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/ultraestructura , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Ruido , Emisiones Otoacústicas Espontáneas , Fosfoproteínas/metabolismo , Recuperación de la Función , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de TiempoRESUMEN
CONCLUSION: Noise exposure can cause a decline in cochlear ribbon synapses and result in consequent hearing loss. The reduction of synaptic puncta appears reversible and may contribute to hearing restoration in mice after noise exposure. OBJECTIVE: To detect whether noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in C57BL/6J mice. METHODS: The mice were assigned randomly to five groups and exposed to white noise at 110 dB SPL for 2 h except the control group. ABR thresholds were acquired before noise exposure (control), immediately following exposure (Day 0), or on Days 4, 7, or 14 after noise exposure. Light microscopy, scanning emission microscopy, and whole mounts examination was utilized to study whether there is morphology change of outer hair cells (OHC), inner hair cells (IHC), or spiral ganglion cells (SGN) due to the 110 dB white noise. Moreover, experimental approaches, including immunostaining and confocal microcopy, were used to detect whether ribbon synapses were the primary targets of noise-induced temporary hearing loss. RESULT: Exposure to 110 dB white noise for 2 h induced TTS in mice, with the maximal ABR threshold elevations seen on the 4(th) day after noise exposure. There were no significant morphological changes in the cochlea. Paralleled changes of pre-synaptic ribbons in both the number and post-synaptic density (PSDs) during this noise exposure were detected. The number of pre-synaptic ribbon, post-synaptic density (PSDs), and co-localized puncta correlated with the shifts of ABR thresholds. Moreover, a complete recovery of ABR thresholds and synaptic puncta was seen on the 14(th) day after the noise stimulations.
Asunto(s)
Umbral Auditivo/fisiología , Cóclea/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Células Ciliadas Auditivas Internas/ultraestructura , Células Ciliadas Auditivas Externas/ultraestructura , Pérdida Auditiva Provocada por Ruido/patología , Estimulación Acústica/efectos adversos , Animales , Cóclea/metabolismo , Cóclea/ultraestructura , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Rastreo , Plasticidad Neuronal , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/ultraestructura , SinapsisRESUMEN
Lignocellulosic biomass is an underutilized, renewable resource that can be converted to biofuels. The key step in this conversion is cellulose saccharification catalyzed by cellulase. In this work, the effect of metal ions on cellulose hydrolysis by cellulases from Penicillium decumbens was reported for the first time. Fe(3+) and Cu(2+) were shown to be inhibitory. Further studies on Fe(3+) inhibition showed the inhibition takes place on both enzyme and substrate levels. Fe(3+) treatment damages cellulases' capability to degrade cellulose and inhibits all major cellulase activities. Fe(3+) treatment also reduces the digestibility of cellulose, due to its oxidation. Treatment of Fe(3+)-treated cellulose with DTT and supplementation of EDTA to saccharification systems partially relieved Fe(3+) inhibition. It was concluded that Fe(3+) inhibition in cellulose degradation is a complicated process in which multiple inhibition events occur, and that relief from Fe(3+) inhibition can be achieved by the supplementation of reducing or chelating agents.