Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Shock ; 61(5): 650-659, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113056

RESUMEN

ABSTRACT: Ischemia can cause reversible or irreversible cell or tissue damage, and reperfusion after ischemia not only has no therapeutic effect but also aggravates cell damage. Notably, gut tissue is highly susceptible to ischemia-reperfusion (IR) injury under many adverse health conditions. Intestinal IR (IIR) is an important pathophysiological process in critical clinical diseases. Therefore, it is necessary to identify better therapeutic methods for relieving intestinal ischemia and hypoxia. Hyperbaric oxygenation refers to the intermittent inhalation of 100% oxygen in an environment greater than 1 atm pressure, which can better increase the oxygen level in the tissue and change the inflammatory pathway. Currently, it can have a positive effect on hypoxia and ischemic diseases. Related studies have suggested that hyperbaric oxygen can significantly reduce ischemia-hypoxic injury to the brain, spinal cord, kidney, and myocardium. This article reviews the pathogenesis of IR and the current treatment measures, and further points out that hyperbaric oxygen has a better effect in IR. We found that not only improved hypoxia but also regulated IR induced injury in a certain way. From the perspective of clinical application, these changes and the application of hyperbaric oxygen therapy have important implications for treatment, especially IIR.


Asunto(s)
Oxigenoterapia Hiperbárica , Intestinos , Daño por Reperfusión , Oxigenoterapia Hiperbárica/métodos , Daño por Reperfusión/terapia , Humanos , Intestinos/irrigación sanguínea , Animales
2.
Artículo en Inglés | MEDLINE | ID: mdl-34557256

RESUMEN

OBJECTIVE: The present study intends to investigate the effects and underlying molecular mechanism of Qigu Capsule (QG) on fracture healing in mice with osteoporosis. METHODS: Ten-week-old female C57BL/6 mice were ovariectomized and three weeks later were evaluated for successful modeling. Then, all mice were prepared into models of transverse fracture in the right middle femoral shaft. Mice were treated daily using a gavage with normal saline (the NS group), Qigu Capsule (the QG group), or alendronate (the ALN group) postoperatively. Fracture callus tissues were collected and analyzed by X-ray, micro-CT, western blot (WB), and transmission electron microscope (TEM) on postoperation Day 14 (POD14), POD28, and POD42. RESULTS: (1) X-ray results showed that on POD14, the QG group had the fracture healing score significantly higher than the NS and ALN groups, and on POD28, it had the fracture healing score higher than the NS group, suggesting that QG could promote fracture healing. (2) Micro-CT results showed that on POD14, the QG group had tissue bone density (TMD) significantly higher than the NS and ALN groups, and on POD28 and POD42, it had bone volume fraction, trabecular number, and TMD significantly higher than the NS group. (3) WB results showed that, compared with the NS group, the QG group had significantly increased expression of nuclear factor kappa-B (NF-κB), hypoxia-inducible factor-1α (HIF-1α), bone alkaline phosphatase (BALP), runt-related transcription factor 2 (Runx2), bone Gla protein (BGP) and collagen Iα1 (COLIα1) on POD14, significantly increased expression of NF-κB, HIF-1α, BALP and COLIα1 on POD28, and significantly increased expression of NF-κB, HIF-1α, and Runx2 on POD42. (4) TEM scanning results showed that, compared with the NS and ALN groups, the QG group had significantly increased numbers of autophagic vacuoles (AVs) in osteocytes on POD14, POD28, and POD42. CONCLUSION: QG could accelerate osteoporotic fracture healing by promoting bone formation and osteocyte autophagy, possibly through upregulating the NF-κB/HIF-1α signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA