Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neuroscience ; 535: 124-141, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37923164

RESUMEN

Ischemic heart disease is a fatal cardiovascular disease that irreversibly impairs the function of the heart, followed by reperfusion leading to a further increase in infarct size. Clinically, we call it myocardial ischemia-reperfusion injury (MIRI). A growing number of clinical observations and experimental studies have found electroacupuncture (EA) to be effective in alleviating MIRI. This study attempts to investigate whether glutamatergic neurons in fastigial nucleus (FN) of the cerebellum are involved in EA pretreatment to alleviate MIRI via sympathetic nerves, and the potential mechanisms of EA pretreatment process. A MIRI model was established by ligating the coronary artery of the left anterior descending branch of the heart for 30 minutes, followed by 2 hours of reperfusion. Multichannel physiological recordings, electrocardiogram, cardiac ultrasound, chemical genetics, enzyme-linked immunosorbent assay and immunofluorescence staining methods were combined to demonstrate that EA pretreatment inhibited neuronal firing and c-Fos expression in FN of the cerebellum and reduced cardiac sympathetic firing. Meanwhile, EA pretreatment significantly reduced cardiac ejection fraction (EF), shortening fraction (SF), percentage infarct area, decreased myocardial norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) concentrations, and improved MIRI-induced myocardial tissue morphology. The results were similar to the inhibition of glutamatergic neurons in FN. However, the activation of glutamatergic neurons in FN diminished the aforementioned effects of EA pretreatment. This study revealed that glutamatergic neurons in FN of the cerebellum is involved in EA pretreatment mediated sympathetic nervous and may be a potential mediator for improving MIRI.


Asunto(s)
Electroacupuntura , Daño por Reperfusión Miocárdica , Humanos , Núcleos Cerebelosos , Cerebelo , Infarto
2.
iScience ; 26(9): 107645, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37670780

RESUMEN

A major side effect of reperfusion therapy following myocardial infarction is myocardial ischemia-reperfusion injury (MIRI). Electroacupuncture preconditioning (EA-pre) has a long history in the treatment of cardiovascular diseases. Here, we demonstrate how EA-pre attenuates MIRI by affecting the phagocytosis of neuronal dendritic spines of microglia of the fastigial nucleus (FNmicroglia). We observed that EA-pre increased activity in FNGABA and then improved myocardial injury by inhibiting abnormal activities of glutaminergic neurons of the FN (FNGlu) during MIRI. Interestingly, we observed changes in the quantity and shape of FN microglia in mice treated with EA-pre and a decrease in the phagocytosis of FNGABA neuronal dendritic spines by microglia. Furthermore, the effects of improving MIRI were reversed when EA-pre mice were chemically activated by intra-FN lipopolysaccharide injection. Overall, our results provide new insight indicating that EA-pre regulates microglial engulfment capacity, thus promoting the improvement of cardiac sympathetic nervous disorder during MIRI.

3.
Zhongguo Zhen Jiu ; 43(6): 669-78, 2023 Jun 12.
Artículo en Chino | MEDLINE | ID: mdl-37313561

RESUMEN

OBJECTIVE: To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI. METHODS: A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 µL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR. RESULTS: Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). CONCLUSION: EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Asunto(s)
Electroacupuntura , Daño por Reperfusión Miocárdica , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Núcleos Cerebelosos , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/terapia , Receptores de GABA-A/genética , ARN Mensajero
4.
J Ethnopharmacol ; 315: 116666, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37211189

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the main anti-liver fibrosis ingredients in CS are incompletely understood. AIM OF THE STUDY: To elucidate the main anti-liver fibrosis ingredients in CS and its underlying mechanism. MATERIAL AND METHODS: Firstly, spectrum-effect relationship (SER) strategy was applied to identify the major ingredients against liver fibrosis in CS. Subsequently, 1H NMR metabonomics and metagenomics sequencing techniques were used to clarify the intervention of palmatine (PAL) on liver fibrosis. Furthermore, the expression of tight junction proteins and the levels of liver inflammation factors were examined, the effect of PAL on microbiota was verified by FMT. RESULTS: The SER model revealed that PAL was the most important active ingredient in CS. 1H NMR fecal metabonomics showed that PAL could reserve the abnormal levels of gut microbial-mediated metabolites of liver fibrosis, such as isoleucine, taurine, butyrate, propionate, lactate, glucose, which mainly involved in amino acid metabolism, intestinal flora metabolism and energy metabolism. Metagenomics sequencing found that PAL could callback the abundance of s__Lactobacillus_murinus, s__Lactobacillus_reuteri, s__Lactobacillus_johnsonii, s__Lactobacillus_acidophilus and s__Faecalibaculum_rodentium to varying degree. Furthermore, the intestinal barrier function and the levels of hepatic inflammation factors were significantly ameliorated by PAL. FMT demonstrated that the therapeutic efficiency of PAL was closely associated with gut microbiota. CONCLUSION: The effects of CS on liver fibrosis were attributed in part to PAL by alleviating metabolic disorders and rebalancing gut microbiota. The SER strategy may be a useful method for the discovery of active constituents in natural plants.


Asunto(s)
Corydalis , Corydalis/química , Metagenómica , Metabolómica/métodos , Cirrosis Hepática/tratamiento farmacológico , Inflamación
5.
Chin Med ; 18(1): 19, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829229

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) had not yet been approved therapy. Electro-acupuncture (EA) has been reported to have potential efficacy. However, high-quality clinical evidence was still lacking. METHODS: NASH patients were randomized and allocated to either sham acupuncture (SA) or EA group in a 1:1 ratio, with the patient blinded. Each patient received 36 sessions of SA or EA treatment over 12 weeks, followed by additional 4 weeks. The primary outcome was the changes in relative liver fat content measured by magnetic resonance imaging proton density fat fraction (MRI-PDFF). RESULTS: A total of 60 patients were enrolled. From baseline to week 12, the reduction of relative liver fat content measured by MRI-PDFF in the EA group (- 33.6%, quantile range: - 52.9%, - 22.7%) was significantly more significant than that in the SA group (- 15.8%, quantile range: - 36.1%, - 2.7%) (p = 0.022). Furthermore, the EA group had more patients who achieved MRI-PDFF to 30% reduction at week 12 (53.3% vs. 25.9%, p = 0.035). EA treatment also significantly reduced body weight (- 3.0 vs. + 0.1 kg, p = 0.034) and BMI (- 1.5 vs. - 0.2 kg/m2, p = 0.013) at week 16. Except for AST (- 27.4 vs. - 16.2 U/L, p = 0.015), other biochemical varieties, including ALT, fasting-glucose, cholesterol, and triglyceride, showed no statistically significant difference. Both groups measured no significant changes in liver stiffness by magnetic resonance elastography (MRE). There were no serious adverse events in either group. CONCLUSIONS: Twelve weeks of EA effectively and safely reduces relative liver fat content in NASH patients. Further multicenter randomized controlled studies are needed. Trial registration Chinese Clinical Trial Registry, ChiCTR2100046617. Registered 23 May 2021, http://www.chictr.org.cn/edit.aspx?pid=127023&htm=4.

6.
J Pharm Biomed Anal ; 222: 115109, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36270097

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent joint inflammation. The development of rheumatoid arthritis is directly correlated with the disturbance of gut microbiome and its metabolites. RA can be effectively treated with the Danggui Sini decoction (DSD), a Traditional Chinese medicine (TCM) prescription from the Treatise on Febrile Diseases. Further research is needed to clarify the precise mechanism of DSD in the treatment of RA. In this study, 1H NMR metabonomics and 16 S rRNA gene sequencing techniques were used to clarify the intervention of DSD on CIA-induced RA. The results of 1H NMR metabolomics of feces revealed that five metabolites (alanine, glucose, taurine, betaine, and xylose) were disturbed, which could be regarded as potential biomarkers of RA. The intestinal microbiome of RA rats had changed, according to the results of 16 S rRNA gene sequencing; eight microbes (g_norank_f_Eubacterium_coprostanoligenes_group, g_Ruminococcus_torques_group, g_Dubosiell, g_Lactobacillus, g_norank_f_Desulfovibrionaceae, g_Bacteroides, g_Oscillibacter, and g_Romboutsia) occurred significantly at the genus level, and DSD significantly impacted six of them (g_Dubosiell, g_Lactobacillus, g_norank_f_Eubacterium_coprostanoligenes_group, g_Ruminococcus_torques_grou, g_Bacteroides, and g_Romboutsia). Three of them (g_norank_f_Eubacterium_ coprostanoligenes_group, g_Romboutsia, and g_Lactobacillus) were regarded as key microbiomes for DSD to treat RA, and three common metabolic pathways (taurine and hypotaurine metabolism; alanine, aspartate, and glutamate metabolism; primary bile acid biosynthesis) were discovered based on the 1H NMR metabonomics and PICRUST2 prediction of 16 S rRNA gene sequencing. Six SCFAs in feces (acetic acid, butyric acid, propionic acid, caproic acid, isobutyric acid, and valeric acid) increased significantly in RA, according to the outcomes of targeting SCFAs, while five SCFAs (acetic acid, butyric acid, propionic acid, caproic acid, and valeric acid) had decreased significantly due to DSD treatment. In conclusion, our study indicated that DSD could regulate RA's metabolic disorder by affecting intestinal microbiome and its metabolites. It also establishes a framework for future research into exploiting gut microbes therapeutic to treat RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Ratas , Animales , ARN Ribosómico 16S/genética , Ácido Butírico , Genes de ARNr , Metabolómica/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Taurina , Alanina , Colágeno
7.
J Neurophysiol ; 129(2): 320-332, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541603

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) has high morbidity and mortality worldwide. Increasing evidence has shown that electroacupuncture (EA) plays a critical role in alleviating MIRI. The aim of this study is to investigate whether glutamatergic neurons in the lateral hypothalamus (LH) have vital effect on MIRI as well as the underlying mechanism during the EA pretreatment. The MIRI model was established by ligating the left anterior descending (LAD) coronary artery for 30 min followed by reperfusion for 2 h. Chemogenetics, electrocardiogram (ECG) recording, ELISA, multichannel physiology recording, and immunofluorescence staining methods were combined to demonstrate that firing frequencies of neurons in the LH and expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the percentage of infarct size and the levels of cardiac troponin I (cTnI) and creatine kinase isoenzymes (CK-MB) were similar to inhibition of glutamatergic neurons in LH, also attenuated morphology of myocardial tissue was induced by MIRI. However, activation of glutamatergic neurons in LH weakened the above effects of EA pretreatment.NEW & NOTEWORTHY This study demonstrates that EA preconditioning can attenuate myocardial injury for MIRI, which is similar to inhibition of glutamatergic neurons in LH. However, chemical activation of glutamatergic neurons in LH attenuates the protective effect of EA pretreatment. These findings help better understand the mechanisms of EA to regulate cardiac function.


Asunto(s)
Electroacupuntura , Daño por Reperfusión Miocárdica , Humanos , Área Hipotalámica Lateral , Miocardio , Electrocardiografía
8.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6730-6739, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212033

RESUMEN

This article analyzed the mechanism of Danggui Sini Decoction(DSD) in improving kidney injury caused by blood stasis syndrome(BSS) in rats. Firstly, 32 female SD rats were randomly divided into the following four groups: a normal group and a BSS group, both receiving an equal amount of distilled water by gavage; a normal+DSD group and a BSS+DSD group, both receiving 5.103 g·kg~(-1) DSD orally for a total of 14 days. Daily cold water bath was given to establish the BSS model, and on the 14th day, BSS rats were subcutaneously injected with 0.8 mg·kg~(-1) adrenaline. Normal rats were subjected to the water bath at 37 ℃ and injected with an equal volume of distilled water. After the experiment, 24-hour urine, serum, and kidney samples were collected for metabolomic analysis, biochemical measurements, and hematoxylin-eosin(HE) staining. The study then employed ~1H-NMR metabolomic technology to reveal the metabolic network regulated by DSD in improving BSS-induced kidney injury and used network pharmacology to preliminarily elucidate the key targets of the effectiveness of DSD. Pathological and biochemical analysis showed that DSD intervention significantly reduced inflammation and abnormal levels of blood creatinine, blood urea nitrogen, and urine protein in the kidneys. Metabolomic analysis indicated that DSD attenuated BSS-induced kidney injury primarily by regulating 10 differential metabolites and three major metabolic pathways(taurine and hypotaurine metabolism, citrate cycle, and acetaldehyde and dicarboxylic acid metabolism). Network pharmacology analysis suggested that the protective effect of DSD against BSS-induced kidney injury might be related to two key genes, ATP citrate lyase(ACLY) and nitric oxide synthase 2(NOS2), and two main metabolic pathways, i.e., arginine biosynthesis, and arginine and proline metabolism. This study, from the perspective of network regulation, provides initial insights and evidence into the mechanism of DSD in improving kidney injury induced by BSS, offering a basis for further investigation into the molecular mechanisms underlying its efficacy.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Metabolómica , Riñón , Arginina , Agua
9.
Biosens Bioelectron ; 215: 114489, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961129

RESUMEN

Due to the technical barriers and complexity of biological detection equipment, the intensive study of the toxicokinetics of uranium has been limited. In other words, efficient biodetection system for accurately and conveniently uranium analysis is the core demand. In this study, an efficient monitoring system was developed for rapid visual detection of trace UO22+ in biological samples by using electrochemiluminescence (ECL) imaging technology. In detail, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylene-1,4-phenylene)] (CN-PPV) was prepared as polymer dots (Pdots), which give a low background signal and notable visual UO22+ response in accurate monitoring as well as high selectivity. This sensor was successfully applied to visual UO22+ detection in blood and urine in an oral uranyl metabolism rat model. The results showed that UO22+ concentration in rat blood reached the maximum 30 min after administration and then decreased rapidly. Even after 48 h, trace UO22+ could still be detected with the developed method, demonstrating its ultrahigh sensitivity and selectivity. This work is the first visualized UO22+ detection via ECL in biological samples. This ECL method for accurate trace UO22+ monitoring in biological samples indicates its wide field of application with good prospects such as nuclear forensics, evidence-based medicine, and toxicological research.


Asunto(s)
Técnicas Biosensibles , Uranio , Animales , Técnicas Biosensibles/métodos , Fotometría , Ratas , Toxicocinética , Uranio/análisis , Uranio/toxicidad
10.
J Ethnopharmacol ; 292: 115166, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35248678

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shuxuetong (SXT) injection is formulated by leech and earthworm, has been widely used in the treatment of thrombotic cardiovascular and cerebrovascular diseases with remarkable clinical efficacy. AIM OF THE STUDY: The purpose of this study is to investigate the protective mechanism of SXT injection on the mice model of hindlimb ischemia, and to evaluate the angiogenic effects of SXT injection and its main active substances. MATERIALS AND METHODS: Hindlimb ischemia was induced by left femoral artery ligation. After operation, the mice were injected with saline, 10 mg/kg/d cilostazol, 37.5 mg/kg/d SXT injection, 75 mg/kg/d SXT injection and 150 mg/kg/d SXT injection via tail vein for 4 weeks. Ischemia severity was assessed using laser Doppler perfusion imaging system. Tissue recovery and capillary density were evaluated by histological and immunofluorescent staining. Vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor (PDGF-BB) expression were measured by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analyses. Human umbilical vein endothelial cells (HUVECs) proliferation was measured using a BrdU kit and the viability of HUVECs was performed by MTT assay. Migration of HUVECs was performed by the wound healing method and a modified transwell assay. Capillary tube formation by HUVECs was examined by using Matrigel assay. Western blotting was used to detect the expressions of p-Cofilin, p-MYPT1, and p-LIMK1. RESULTS: SXT injection treatment significantly restored the blood flow and reduced tissue injury in mouse gastrocnemius muscle. SXT injection treatment increased capillary density and promoted angiogenesis in hindlimb ischemia. Moreover, SXT injection enhanced the expression of VEGF-A and PDGF-BB at both mRNA and protein levels in ischemic tissue of mice. SXT injection and its main active peptides dramatically increased the migration and capillary tube formation of HUVECs. SXT injection and its peptides enhanced protein expressions of the phosphorylation of MYPT1, Cofilin, and LIMK1. DSYVGDEAQSKR, YNELRVAPEEHP, and IQFLPEGSPVTM may act as the active components of SXT injection. CONCLUSION: SXT injection promoted angiogenesis and improved function recovery in hindlimb ischemia mice by regulation of VEGF-A/PDGF-BB. Moreover, SXT injection and its active peptides induced cell migration and tube formation in HUVECs through activating the MYPT1/LIMK1/Cofilin pathway. This study provided experimental basis for SXT injection in the treatment of ischemic diseases and revealed the effective substance of SXT injection in regulating angiogenesis, providing better evidence for the clinical application of SXT injection.


Asunto(s)
Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular , Factores Despolimerizantes de la Actina/metabolismo , Factores Despolimerizantes de la Actina/farmacología , Animales , Becaplermina , Medicamentos Herbarios Chinos , Miembro Posterior/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Quinasas Lim/metabolismo , Ratones , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Metabolites ; 13(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36676934

RESUMEN

Liver fibrosis is a pathological result of liver injury that usually leads to a pathophysiological wound healing response. The total alkaloids of Corydalis saxicola Bunting (TACS) have been used for hepatoprotective effects on the liver. However, its exact therapeutic mechanisms of liver fibrosis are not yet well understood. To explore the potential anti-fibrosis mechanism of TACS, metabolomics coupled with network pharmacology were applied to reveal the underlying mechanisms. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with multivariate statistical analyses were performed to estimate changes in metabolic profiles. As a result, a total of 23 metabolites in rats with liver fibrosis were altered; of these, 11 had been downregulated and 12 had been upregulated compared with the control group. After TACS treatment, the levels of 13 metabolites were significantly restored compared with the CCl4-treated group, of which 4 metabolites were up-regulated and 9 metabolites were down-regulated. Many of these metabolites are involved in the bile acid metabolism, glutathione metabolism, tryptophan metabolism and purine metabolism. Then, three key targets, including cytochrome P450 family1 subfamily A member 1 (CYP1A1), ornithine decarboxylase 1 (OCD1) and monoamine oxidase Type B (MAOB) were predicted as potential therapeutic targets of TACS against liver fibrosis through network pharmacology analysis. Finally, palmatine, tetrahydropalmatine and dehydrocavidine were screened as potential active compounds responsible for the anti-fibrosis effect of TACS by molecular docking analysis. This study reveals that TACS exerted anti-fibrosis effects by regulating the liver metabolic pathway with multiple components and multiple targets, which is helpful to further clarify the hepatoprotective mechanisms of natural plant extracts.

12.
Pharm Biol ; 59(1): 252-261, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33684026

RESUMEN

CONTEXT: Naoxintong (NXT), a prescribed traditional Chinese medicine, widely used in cerebrovascular and cardiovascular diseases, could be effective in diabetic wounds. OBJECTIVE: This study evaluates the wound healing activity of NXT by employing an excisional wound splinting model. MATERIALS AND METHODS: NXT was dissolved in saline and given daily by gavage. Wounds were induced at the dorsum of non-diabetic (db/+) and diabetic (db/db) mice and treated with saline or 700 mg/kg/d NXT for 16 days. Wound closure was measured every four days. Extracellular matrix (ECM) remodelling, collagen deposition, leukocyte infiltration and expression of Col-3, CK14, CXCL1, CXCL2, MPO, Ly6G, CD68, CCR7, CD206, p-JAK1, p-STAT3 and p-STAT6 was analysed. RESULTS: NXT significantly accelerated rate of wound closure increased from 70% to 84%, accompanied by up-regulation of collagen deposition and ECM at days 16 post-injury. Moreover, NXT alleviated neutrophil infiltration, accompanied by down-regulation of CXCL1 and CXCL2 mRNA expression. In addition, NXT markedly augmented neutrophil efferocytosis. In diabetic wounds, the levels of M1 marker gene (CCR7) increased, while M2 marker gene (CD206) decreased, demonstrating a pro-inflammatory shift. Application of NXT increased M2 macrophage phenotype in db/db mice. Mechanistically, NXT treatment increased expression level of p-STAT3 and p-STAT6 at days 3 post-injury, indicating NXT mediated macrophages towards M2 phenotype and alleviated inflammation in diabetic wounds by activation of STAT3 and STAT6. CONCLUSIONS: Our study provides evidence that NXT accelerates diabetic wound healing by attenuating inflammatory response, which provides an important basis for use of NXT in the treatment of chronic diabetic wound healing.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/complicaciones , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Masculino , Ratones , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT6/metabolismo
13.
Pharm Biol ; 58(1): 165-175, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32608342

RESUMEN

Context: Astragali Radix (AR) and Angelica sinensis Radix (ASR) combinations are used to treat cardiovascular disorders.Objectives: This study investigates the protective effects of different compatibility proportions of AR and ASR on cardiac dysfunction in a C57BL/6 mouse model of myocardial infarction (MI).Materials and methods: MI mice were induced by ligation of the left coronary artery and divided into six groups: sham, vehicle, 10 mg/kg/d simvastatin and combinations of AR and ASR at different ratios, including 1:1 (AR 2.5 g/kg + ASR 2.5 g/kg), 3:1 (AR 3.75 g/kg + ASR 1.25 g/kg) and 5:1 (AR 4.17 g/kg + ASR 0.83 g/kg). Both AR-ASR combinations and simvastatin were dissolved in saline solution and given daily by gavage. The left ventricle function, infarct size, heart tissue injury, apoptosis of cardiomyocytes, leukocyte infiltrates, capillary density and expression of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, Bad, IL-1ß, IL-6, VEGF, p-Akt and p-eNOS were analysed.Results: Different combinations of AR and ASR improve cardiac function and reduce infarct size (61.15% vs. 39.3%, 42.65% and 45.5%) and tissue injury through different mechanisms. When AR was combined with ASR at ratio of 1:1, the inflammation and cardiomyocyte apoptosis were suppressed (p < 0.05, p < 0.01). The combination ratio of 3:1 exerted effect in promoting angiogensis (p < 0.05). In the combination of AR and ASR at 5:1 ratio, angiogenesis was significantly improved (p < 0.01) and the apoptosis was inhibited (p < 0.05).Conclusions: Our results reflect the regulation of multiple targets and links in herb pairs and provide an important basis for the use of AR and ASR combinations in the treatment of MI.


Asunto(s)
Angelica sinensis , Planta del Astrágalo , Cardiotónicos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Raíces de Plantas , Animales , Cardiotónicos/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Extractos Vegetales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA