Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 354: 141730, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492682

RESUMEN

In this study, Fe0@Fe3O4 was synthesized and used to remove U(VI) from groundwater. Different experimental conditions and cycling experiments were used to investigate the performance of Fe0@Fe3O4 in the U(VI) removal, and the XRD, TEM, XPS and XANES techniques were employed to characterize the Fe0@Fe3O4. The results showed that the U(VI) removal efficiency of Fe0@Fe3O4 was 48.5 mg/g that was higher than the sum of removal efficiency of Fe0 and Fe3O4. The uranium on the surface of Fe0@Fe3O4 mainly existed as U(IV), followed by U(VI) and U(V). The Fe0 content decreased after reaction, while the Fe3O4 content increased. Based on the results of experiments and characterization, the enhanced removal efficiency of Fe0@Fe3O4 was attributed to the synergistic effect of Fe0 and Fe3O4 in which Fe3O4 accelerated the Fe0 corrosion that promoted the progressively formation of Fe(II) that promoted the reduction of adsorbed U(VI) to U(IV) and incorporated U(VI) to U(V). The performance of Fe0@Fe3O4 at near-neutrality condition was better than at acidic and alkalic conditions. The chloride ions, sulfate ions and nitrate ions showed minor effect on the Fe0@Fe3O4 performance, while carbonate ions exhibited significant inhibition. The metal cations showed different effect on the Fe0@Fe3O4 performance. The removal efficiency of Fe0@Fe3O4 decreased with the number of cycling experiment. Ionizing radiation could regenerate the used Fe0@Fe3O4. This study provides insight into the U(VI) removal by Fe0@Fe3O4 in aqueous solution.


Asunto(s)
Hierro , Uranio , Agua , Cloruros , Halógenos , Adsorción
2.
Chemosphere ; 353: 141586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452980

RESUMEN

Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.


Asunto(s)
Óxido de Aluminio , Cobalto , Compuestos Férricos , Óxido de Magnesio , Nanocompuestos , Sulfametoxazol , Peróxidos
3.
Chemosphere ; 351: 141204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237778

RESUMEN

Priestia sp. WW1 was isolated from a uranium-contaminated mining soil and identified. The uranium removal characteristics and mechanism of Priestia sp. WW1 were investigated. The results showed that the removal efficiency of uranium decreased with the increase of initial uranium concentration. When the uranium initial concentration was 5 mg/L, the uranium removal efficiency achieved 92.1%. The increase of temperature could promote the uranium removal. Carbon source could affect the removal rate of uranium, which was the fastest when the methanol was used as carbon source. The solution pH had significant effect on the uranium removal efficiency, which reached the maximum under solution pH 5.0. The experimental results and FTIR as well as XPS demonstrated that Priestia sp. WW1 could remove uranium via both adsorption and reduction. The common chloride ions, sulfate ions, Mn(II) and Cu(II) enhanced the uranium removal, while Fe(III) depressed the uranium removal. The Priestia sp. WW1 could effectively remove the uranium in the actual mining groundwater, and the increase of initial biomass could improve the removal efficiency of uranium in the actual mining groundwater. This study provided a promising bacterium for uranium remediation in the groundwater.


Asunto(s)
Bacillaceae , Agua Subterránea , Uranio , Uranio/análisis , Compuestos Férricos , Carbono , Iones , Suelo , Adsorción
4.
Environ Pollut ; 220(Pt B): 927-935, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27823863

RESUMEN

Metamitron is one of the most commonly used herbicide in sugar beet and flower bulb cultures. Numerous laboratory and field studies on sorption and degradation of metamitron were performed. Detailed biodegradation studies in soil using 13C-isotope labeling are still missing. Therefore, we aimed at providing a detailed turnover mass balance of 13C6-metamitron in soil microcosms over 80 days. In the biotic system, metamitron mineralized rapidly, and 13CO2 finally constituted 60% of the initial 13C6-metamitron equivalents. In abiotic control experiments CO2 rose to only 7.4% of the initial 13C6-metamitron equivalents. The 13C label from 13C6-metamitron was incorporated into microbial amino acids that were ultimately stabilized in the soil organic matter forming presumably harmless biogenic residues. Finally, 13C label from 13C6-metamitron was distributed between the 13CO2 and the 13C-biogenic residues indicating nearly complete biodegradation. The parallel increase of 13C-alanine, 13C-glutamate and 13CO2 indicates that metamitron was initially biodegraded via the desamino-metamitron route suggesting its relevance in the growth metabolism. In later phases of biodegradation, the "Rhodococcus route" was indicated by the low 13CO2 evolution and the high relevance of the pyruvate pathway, which aims at biomolecule synthesis and seems to be related to starvation. This is a first report on the detailed degradation route of metamitron in soil.


Asunto(s)
Biodegradación Ambiental , Herbicidas/química , Marcaje Isotópico , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Suelo/química , Triazinas/metabolismo , Agricultura , Beta vulgaris , Monitoreo del Ambiente , Alemania , Raíces de Plantas , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA