Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-10, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577968

RESUMEN

Two heterodimers including a clovane-phenylpropanoid hybrid (1) and a clovane-menthane hybrid (2), five linear sesquiterpenoids incorporating a tetrahydrofuran ring (3-6 & 8), and four steroids (7 & 9-11), were separated from the ethanolic extract of a well-known aromatic and medicinal herb Eupatorium fortunei. Their structures were characterised by detailed analyses of spectroscopic data and comparison with known analogues, with seven (1-7) of them being described for the first time. The hybrids 1 and 2 represent the first examples of clovane type sesquiterpenoids hybridising with other class of natural products, and compounds 3-6 and 8 are first linear sesquiterpenyl constituents reported from the title species. All the isolates were evaluated for their inhibitory effect on the NO production induced by LPS in murine RAW264.7 macrophage cells, and 1, 7, 10 and 11 exhibited moderate activity with IC50 values in the range of 24.4-43.5 µM.

2.
Ren Fail ; 46(1): 2338566, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38655870

RESUMEN

OBJECTIVE: Shenkang injection (SKI) has been widely used in China for many years for the treatment of kidney disease. The objective of this systematic review was to assess the efficacy of Shenkang injection for the treatment of acute kidney injury (AKI). METHODS: A search was conducted across seven databases, encompassing data from the inception of each database through October 8th, 2023. Randomized controlled trials comparing SKI-treated AKI patients with control subjects were extracted. The main outcome measure was serum creatinine (SCr) levels. Secondary outcomes included blood urea nitrogen (BUN), serum cystatin C (CysC), 24-h urine protein (24 h-Upro) levels, APACHE II score and adverse reactions. RESULTS: This meta-analysis included eleven studies, and the analysis indicated that, compared with the control group, SKI significantly decreased SCr [WMD = -23.31, 95% CI (-28.06, -18.57); p < 0.001]; BUN [WMD = -2.07, 95% CI (-2.56, -1.57); p < 0.001]; CysC [WMD = -0.55, 95% CI (-0.78, -0.32), p < 0.001]; 24-h urine protein [WMD = -0.43, 95% CI (-0.53, -0.34), p < 0.001]; and the APACHE II score [WMD = -3.07, 95% CI (-3.67, -2.48), p < 0.001]. There was no difference in adverse reactions between the SKI group and the control group [RR = 1.32, 95% CI (0.66, 2.63), p = 0.431]. CONCLUSION: The use of SKI in AKI patients may reduce SCr, BUN, CysC, 24-h Upro levels, and APACHE II scores in AKI patients. The incidence of adverse reactions did not differ from that in the control group. Additional rigorous clinical trials will be necessary in the future to thoroughly evaluate and establish the effectiveness of SKI in the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Nitrógeno de la Urea Sanguínea , Creatinina , Medicamentos Herbarios Chinos , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Lesión Renal Aguda/tratamiento farmacológico , APACHE , Creatinina/sangre , Cistatina C/sangre , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/efectos adversos , Inyecciones , Resultado del Tratamiento
3.
J Hazard Mater ; 469: 134043, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492386

RESUMEN

Microplastics and nanoplastics are ubiquitous in rivers and undergo environmental aging. However, the molecular mechanisms of plastic aging and the in-depth effects of aging on ecological functions remain unclear in waters. The synergies of microplastics and nanoplastics (polystyrene as an example) with natural organic small molecules (e.g., natural hyaluronic acid and vitamin C related to biological tissue decomposition) are the key to producing radicals (•OH and •C). The radicals promote the formation of bubbles on plastic surfaces and generate derivatives of plastics such as monomer and dimer styrene. Nanoplastics are easier to age than microplastics. Pristine plastics inhibit the microbial Shannon diversity index and evenness, but the opposite results are observed for aging plastics. Pristine plastics curb pectin decomposition (an indicator of plant-originated refractory carbon), but aging plastics promote pectin decomposition. Microplastics and nanoplastics undergoing aging processes enhance the carbon biogeochemical cycle. For example, the increased carbohydrate active enzyme diversity, especially the related glycoside hydrolase and functional species Pseudomonas and Clostridium, contributes to refractory carbon decomposition. Different from the well-studied toxicity and aging of plastic pollutants, this study connects plastic pollutants with biological tissue decomposition, biodiversity and climate change together in rivers.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos/toxicidad , Agua , Contaminantes Químicos del Agua/análisis , Pectinas
4.
Arch Pediatr ; 31(1): 85-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168614

RESUMEN

The cases were a pair of siblings with a carnitine palmitoyltransferase (CPT2) deficiency detected by tandem mass spectrometry. Their C16 and C18:1 levels were both within the normal range, while C0 was low, and the (C16+C18:1)/C2 ratio was high. Following genetic testing, a novel CPT2 gene mutation was identified in both patients. The male patient had a normal growth rate during 5 years of follow-up after treatment. By contrast, the female patient did not take l-carnitine supplements and died after an infectious disease-associated illness when she was 1 year old. These data emphasize the need to raise awareness about CPT2 deficiency so as to correctly diagnose and accurately manage the disease.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Errores Innatos del Metabolismo , Femenino , Humanos , Lactante , Masculino , Carnitina , Carnitina O-Palmitoiltransferasa/genética , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Mutación , Preescolar
5.
Plant Foods Hum Nutr ; 79(1): 98-105, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38085440

RESUMEN

A water-soluble polysaccharide (EP) was purified from edible algae Enteromorpha prolifera. Gel permeation chromatography (GPC), ion chromatography (IC), and fourier transform infrared (FT-IR) were performed to characterize its structure. EP was defined as a low molecular weight (6625 Da) composed of rhamnose, glucose, glucuronic acid, xylose, galactose, arabinose, and mannose. Moreover, it was a sulfated polysaccharide with a degree of substitution (DS) of 1.48. Then, the high-fat diet/streptozotocin (HFD/STZ) induced diabetic mouse model was established to support evidence for a novel hypoglycemic mechanism. Results showed that blood glucose (47.32%), liver index (7.65%), epididymal fat index (16.86%), serum total cholesterol (26.78%) and triglyceride (37.61%) in the high-dose EP (HEP) group were significantly lower than those in the HFD group. Noticeably, the content of liver glycogen in the HEP group was significantly higher (62.62%) than that in the HFD group, indicating the promotion of glycogen synthesis. These beneficial effects were attributed to significantly increased protein kinase B (AKT) phosphorylation and its downstream signaling response. Further studies showed that diabetic mice exhibited excessive O-GlcNAcylation level and high expression of O-linked ß-D-N-acetylglucosamine transferase (OGT), which were decreased by 62.21 and 30.43% in the HEP group. This result suggested that EP had a similar effect to OGT inhibitors, which restored AKT phosphorylation and prevented pathoglycemia. This work reveals a novel hypoglycemic mechanism of EP, providing a theoretical basis for further studies on its pharmacological properties in improvement of T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Algas Comestibles , Ulva , Animales , Ratones , Diabetes Mellitus Tipo 2/prevención & control , Proteínas Proto-Oncogénicas c-akt , Sulfatos , Diabetes Mellitus Experimental/tratamiento farmacológico , Espectroscopía Infrarroja por Transformada de Fourier , Hipoglucemiantes/farmacología , Polisacáridos/farmacología
6.
Food Funct ; 14(23): 10401-10417, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955584

RESUMEN

Gut microbiota are closely related to lipopolysaccharide (LPS)-induced acute lung injury (ALI). Akkermansia muciniphila (A. muciniphila) maintains the intestinal barrier function and regulates the balance of reduced glutathione/oxidized glutathione. However, it may be useful as a treatment strategy for LPS-induced lung injury. Our study aimed to explore whether A. muciniphila could improve lung injury by affecting the gut microbiota. The administration of A. muciniphila effectively attenuated lung injury tissue damage and significantly decreased the oxidative stress and inflammatory reaction induced by LPS, with lower levels of myeloperoxidase (MDA), enhanced superoxide dismutase (SOD) activity, decreased pro-inflammatory cytokine levels, and reduced macrophage and neutrophil infiltration. Moreover, A. muciniphila maintained the intestinal barrier function, reshaped the disordered microbial community, and promoted the secretion of short-chain fatty acids (SCFAs). A. muciniphila significantly downregulated the expression of TLR2, MyD88 and NF-kappa B (P < 0.05). Butyrate supplementation demonstrated a significant improvement in the inflammatory response (P < 0.05) and mitigation of histopathological damage in mice with ALI, thereby restoring the intestinal butyric acid concentration. In conclusion, our findings indicate that A. muciniphila inhibits the accumulation of inflammatory cytokines and attenuates the activation of the TLR2/Myd88/NF-κB pathway due to exerting anti-inflammatory effects through butyrate. This study provides an experimental foundation for the potential application of A. muciniphila and butyrate in the prevention and treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Microbioma Gastrointestinal , Animales , Ratones , Lipopolisacáridos/efectos adversos , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 2/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , FN-kappa B/genética , FN-kappa B/metabolismo , Citocinas/metabolismo , Ácidos Grasos Volátiles/farmacología , Ácido Butírico/farmacología , Pulmón
7.
Fitoterapia ; 171: 105700, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832878

RESUMEN

The well-known aromatic and medicinal plant Eupatorium fortunei Turcz. is widely cultivated in China, and previous studies on its bioactive constituents mainly focus on the essential oil ingredients especially thymol derivatives. However, reports on other type of constituents and the potential application are lacking. In the present project, an intensive chemical fractionation on the aerial part extract of E. fortunei led to the isolation and identification of a series of fatty acid derivatives (lipids, 1a/1b-19) including seven pairs of previously undescribed enantiomers (1a/1b-7a/7b), as well as a lignan (brachangobinan A (BBA), 20) and two monoterpenes (8S/8R-9-hydroxythymol, 21a/21b). A preliminary biological evaluation of these compounds in a NO production inhibitory assay model demonstrated compound BBA as the most active one. Network pharmacology analysis was used to predict and explore the possible anti-inflammatory targets and mechanism of BBA, which revealed some potential inflammation-related proteins and signaling pathways. Further experimental investigations validated that the anti-inflammatory effect of BBA could be achieved by suppressing pro-inflammatory factors and blocking the activation of NF-κB signaling pathway. Taken together, our work shows that E. fortunei can serve as a potential resource of lipids and anti-inflammatory agents.


Asunto(s)
Eupatorium , Plantas Medicinales , Eupatorium/química , Estructura Molecular , Plantas Medicinales/química , Antiinflamatorios/farmacología , Lípidos
8.
Phytochemistry ; 210: 113646, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36958706

RESUMEN

Twenty-two labdane-type diterpenoids, including ten pairs of 15-epimers and a pair of 13,15-epimers, were obtained from the aerial parts of a well-known medicinal plant Leonurus japonicus Houtt. While these epimers were separated by chiral HPLC, their structures were established mainly via spectroscopic methods especially NMR, X-ray crystallography and ECD techniques. Among them, seventeen compounds, encompassing three pairs of solvolysis artefacts likely due to the use of ethanol as extracting solvent, were reported for the first time in the current work. Our preliminary anti-inflammatory screening demonstrated that seven diterpenoids displayed noteworthy inhibitory effect on the NO production in LPS-induced RAW264.7 cells. In addition, the release of pro-inflammatory factors TNF-α, IL-1ß and IL-6, as well as the expression of iNOS and COX-2 proteins, was also suppressed by the unreported 15,16-epoxy-6ß-hydroxy-15α-methoxy-7,16-dioxolabd-8,13-diene. Further investigation into the preliminary anti-inflammatory mechanism of this compound indicated that it could block the activation of NF-κB signaling pathway.


Asunto(s)
Diterpenos , Leonurus , Leonurus/química , Antiinflamatorios/farmacología , Espectroscopía de Resonancia Magnética , Diterpenos/química , Componentes Aéreos de las Plantas/química , Lipopolisacáridos/farmacología
9.
J Integr Med ; 21(2): 205-214, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792414

RESUMEN

OBJECTIVE: Anxiety is one of the most common symptoms associated with autistic spectrum disorder. The essential oil of Cananga odorata (Lam.) Hook. f. & Thomson, usually known as ylang-ylang oil (YYO), is often used in aromatherapy as a mood-regulating agent, sedative, or hypotensive agent. In the present study, the effects and mechanisms of YYO in alleviating anxiety, social and cognitive behaviors in autism-like rats were investigated. METHODS: The prenatal valproic acid (VPA) model was used to induce autism-like behaviors in offspring rats. The effectiveness of prenatal sodium valproate treatment (600 mg/kg) on offspring was shown by postnatal growth observation, and negative geotaxis, olfactory discrimination and Morris water maze (MWM) tests. Then three treatment groups were formed with varying exposure to atomized YYO to explore the effects of YYO on the anxiety, social and cognitive behaviors of the autistic-like offspring through the elevated plus-maze test, three-chamber social test, and MWM test. Finally, the monoamine neurotransmitters, including serotonin, dopamine and their metabolites, in the hippocampus and prefrontal cortex (PFC) of the rats were measured using a high-performance liquid chromatography. RESULTS: Offspring of VPA exposure rats showed autism-like behaviors. In the VPA offspring, medium-dose YYO exposure significantly elevated the time and entries into the open arms in the elevated plus-maze test, while low-dose YYO exposure significantly enhanced the social interaction time with the stranger rat in session 1 of the three-chamber social test. VPA offspring treated with YYO exposure used less time to reach the platform in the navigation test of the MWM test. YYO exposure significantly elevated the metabolism of serotonin and dopamine in the PFC of VPA offspring. CONCLUSION: YYO exposure showed the effects in alleviating anxiety and improving cognitive and social abilities in the offspring of VPA exposure rats. The role of YYO was related to the regulation of the metabolism of serotonin and dopamine. Please cite this article as: Zhang N, Wang ST, Yao L. Inhalation of Cananga odorata essential oil relieves anxiety behaviors in autism-like rats via regulation of serotonin and dopamine metabolism. J Integr Med. 2023; 21(2): 205-214.


Asunto(s)
Trastorno Autístico , Cananga , Aceites Volátiles , Embarazo , Femenino , Ratas , Animales , Trastorno Autístico/tratamiento farmacológico , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Serotonina/metabolismo , Cananga/química , Cananga/metabolismo , Dopamina , Ansiedad/tratamiento farmacológico , Ácido Valproico/farmacología , Aceites de Plantas , Modelos Animales de Enfermedad
10.
Front Cell Infect Microbiol ; 12: 1028267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439215

RESUMEN

Diets rich in fiber may provide health benefits and regulate the gut microbiome, which affects the immune system. However, the role of dietary fiber in Clostridioides difficile infection (CDI) is controversial. Here, we investigated the use of fermentable fibers, such as inulin or pectin, to replace the insoluble fiber cellulose to explore how dietary fiber affects C. difficile-induced colitis in mice through intestinal microecology and metabolomics. Using C. difficile VPI 10463, we generated a mouse model of antibiotic-induced CDI. We evaluated disease outcomes and the microbial community among mice fed two fermentable fibers (inulin or pectin) versus the insoluble fiber cellulose. We analyzed and compared the gut microbiota, intestinal epithelium, cytokine levels, immune responses, and metabolites between the groups. Severe histological injury and elevated cytokine levels were observed in colon tissues after infection. Different diets showed different effects, and pectin administration protected intestinal epithelial permeability. Pectin also steadily increased the diversity of the microbiome and decreased the levels of C. difficile-induced markers of inflammation in serum and colonic tissues. The pectin group showed a higher abundance of Lachnospiraceae and a lower abundance of the conditionally pathogenic Enterobacteriaceae than the cellulose group with infection. The concentration of short-chain fatty acids in the cecal contents was also higher in the pectin group than in the cellulose group. Pectin exerted its effects through the aryl hydrocarbon receptor (AhR) pathway, which was confirmed by using the AhR agonist FICZ and the inhibitor CH2223191. Our results show that pectin alters the microbiome and metabolic function and triggers a protective immune response.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Enterocolitis Seudomembranosa , Ratones , Animales , Fibras de la Dieta , Inulina , Modelos Animales de Enfermedad , Pectinas , Celulosa , Citocinas
11.
Artículo en Inglés | MEDLINE | ID: mdl-36310622

RESUMEN

The beneficial effects of Tai Chi on the cardiovascular risk profile and the migraine trigger factors among female migraineurs remain unknown. This study aimed to evaluate the effectiveness of a 12-week Tai Chi training on blood pressure (BP) and migraine-related trigger factors, including stress, fatigue, and sleep quality among Chinese women with episodic migraine. In this study, eligible Hong Kong Chinese women aged 18-65 years were randomly assigned to the Tai Chi group adopting a modified 33-short form of Yang style Tai Chi training for 12 weeks, followed by additional 12 weeks of self-practice or the waiting list control group that maintained the usual lifestyle for 24 weeks. The primary outcome was the changes in BP from the baseline to 12 and 24 weeks. The secondary outcomes included the stress level, fatigue, and sleep quality measured by the perceived stress scale (PSS), the numeric rating scale-fatigue (NRS-fatigue), and the Pittsburgh sleep quality index (PSQI), respectively. Significant between-group differences were found in systolic BP (-6.8 mmHg at 24 weeks, P=0.02), and a decreasing trend was significant across baseline, 12 weeks, and 24 weeks between groups (P < 0.05). The 12-week Tai Chi training significantly reduced the BP level and moderately improved stress level, fatigue status, and sleep quality among Chinese women with episodic migraine. Therefore, Tai Chi could be considered a promising mind-body exercise with good feasibility for migraineurs in the future. This trial is registered with registration number NCT03015753.

12.
Environ Int ; 169: 107548, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179645

RESUMEN

Phenanthrene (PHE), mainly released from coal tar and petroleum distillation, is an important kind of prevalent polycyclic aromatic hydrocarbons (PAHs) contamination in China (up to 2.38 ± 0.02 mg/kg in soil and 8668 ng/L in surface water) and other countries in the world. Metal-organic frameworks (MOFs) show promising application prospects in the decontamination field, however, suffering from the intrinsic fragility and fine powder forms. Therefore, macroscopic MOFs architecture-sandwich-like Fe-ZIF-8/blue TiO2 nanotube arrays (BTNAs)/Ti substrate (FBTT) anode with strong interfacial bonding (Fe-O-Ti and Fe-2-MIM-Ti coordination) was constructed using innovative in situ growth, condensation-crystallization-deposition, and pyrolysis methods, aiming at exploring the feasibility of MOFs-based anode/peroxymonosulfate (PMS) mediated PHE elimination, revealing the in-depth mechanisms, simultaneously overcoming the intrinsic drawbacks of MOFs. The FBTT-4 (doping content of 30 %) efficiently degraded PHE by 90.01 % and 74.5 % within 10 min at 350 µg/L and 3 mg/L, respectively, mediated by the ·OH compared to the SO4·-, 1O2, and O2·-. Post-optimized range of anodic potential enabled (i) anodic oxidation, (ii) activation of water and PMS molecules to produce active species, (iii) capture of electrons in reactants to reduce Fe3+/Ti4+ to Fe2+/Ti3+, maintaining the proportion of Fe/Ti with low valence and thus stable PMS activation capacity, and (iv) regulation of the Fe/Ti d-band center to modulate the anode adsorption capacity. The further increment in anodic potential could promote "dark photocatalysis" with a Z-scheme-like mechanism. Thus, it is proposed that the development of macroscopic MOFs-based anode, especially those with small band gaps, represents vast potentials in electrocatalytic contamination elimination. Simultaneously, the MOFs-based anode is expected to fully exploit their catalytic capacities and solve their intrinsic defects as well.


Asunto(s)
Alquitrán , Estructuras Metalorgánicas , Petróleo , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Catálisis , Electrodos , Peróxidos , Polvos , Suelo , Titanio , Agua
13.
Nutrients ; 14(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36145133

RESUMEN

Clostridioides difficile infection is closely related to the intestinal flora disorders induced by antibiotics, and changes in the intestinal flora may cause the occurrence and development of Clostridioides difficile infection. Epigallocatechin-3-gallate (EGCG) is one of the major bioactive ingredients of green tea and has been suggested to alleviate the growth of C. difficile in vitro. EGCG can ameliorate several diseases, such as obesity, by regulating the gut microbiota. However, whether EGCG can attenuate C. difficile infection by improving the gut microbiota is unknown. After establishing a mouse model of C. difficile infection, mice were administered EGCG (25 or 50 mg/kg/day) or PBS intragastrically for 2 weeks to assess the benefits of EGCG. Colonic pathology, inflammation, the intestinal barrier, gut microbiota composition, metabolomics, and the transcriptome were evaluated in the different groups. Compared with those of the mice in the CDI group, EGCG improved survival rates after infection, improved inflammatory markers, and restored the damage to the intestinal barrier. Furthermore, EGCG could improve the intestinal microbial community caused by C. difficile infection, such as by reducing the relative abundance of Enterococcaceae and Enterobacteriaceae. Moreover, EGCG can increase short-chain fatty acids, improve amino acid metabolism, and downregulate pathways related to intestinal inflammation. EGCG alters the microbiota and alleviates C. difficile infection, which provides new insights into potential therapies.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Aminoácidos , Animales , Antibacterianos/uso terapéutico , Catequina/análogos & derivados , Infecciones por Clostridium/tratamiento farmacológico , Ácidos Grasos Volátiles , Homeostasis , Inflamación/tratamiento farmacológico , Ratones ,
14.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145347

RESUMEN

As the use of herbs has become more popular worldwide, there are increasing reports of herb-drug interactions (HDIs) following the combination of herbs and drugs. The active components of herbs are complex and have a variety of pharmacological activities, which inevitably affect changes in the pharmacokinetics of chemical drugs in vivo. The absorption, distribution, metabolism, and excretion of drugs in vivo are closely related to the expression of drug transporters. When the active components of herbs inhibit or induce the expression of transporters, this can cause changes in substrate pharmacokinetics, resulting in changes in the efficacy and toxicity of drugs. In this article, the tissue distribution and physiological functions of drug transporters are summarized through literature retrieval, and the effects of herbs on drug transporters and the possible mechanism of HDIs are analyzed and discussed in order to provide ideas and a reference for further guiding of safe clinical drug use.

15.
J Ethnopharmacol ; 298: 115630, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987407

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The liver toxicity of Reynoutria multiflora (Thunb.) Moldenke. (Polygonaceae) (Polygonum multiflorum Thunb, PM) has always attracted much attention, but the related toxicity materials and mechanisms have not been elucidated due to multi-component and multi-target characteristics. In previous hepatotoxicity screening, different components of PM were first evaluated and the hepatotoxicity of component D [95% ethanol (EtOH) elution] in a 70% EtOH extract of PM (PM-D) showed the highest hepatotoxicity. Furthermore, the main components of PM-D were identified and their hepatotoxicity was evaluated based on a zebrafish embryo model. However, the hepatotoxicity mechanism of PM-D is unknown. AIM OF THE STUDY: This work is to explore the hepatotoxicity mechanisms of PM-D by integrating network toxicology and spatially resolved metabolomics strategy. MATERIALS AND METHODS: A hepatotoxicity interaction network of PM-D was constructed based on toxicity target prediction for eight key toxic ingredients and a hepatotoxicity target collection. Then the key signaling pathways were enriched, and molecular docking verification was implemented to evaluate the ability of toxic ingredients to bind to the core targets. The pathological changes of liver tissues and serum biochemical assays of mice were used to evaluate the liver injury effect of mice with oral administration of PM-D. Furthermore, spatially resolved metabolomics was used to visualize significant differences in metabolic profiles in mice after drug administration, to screen hepatotoxicity-related biomarkers and analyze metabolic pathways. RESULTS: The contents of four key toxic compounds in PM-D were detected. Network toxicology identified 30 potential targets of liver toxicity of PM-D. GO and KEGG enrichment analyses indicated that the hepatotoxicity of PM-D involved multiple biological activities, including cellular response to endogenous stimulus, organonitrogen compound metabolic process, regulation of the apoptotic process, regulation of kinase, regulation of reactive oxygen species metabolic process and signaling pathways including PI3K-Akt, AMPK, MAPK, mTOR, Ras and HIF-1. The molecular docking confirmed the high binding activity of 8 key toxic ingredients with 10 core targets, including mTOR, PIK3CA, AKT1, and EGFR. The high distribution of metabolites of PM-D in the liver of administrated mice was recognized by mass spectrometry imaging. Spatially resolved metabolomics results revealed significant changes in metabolic profiles after PM-D administration, and metabolites such as taurine, taurocholic acid, adenosine, and acyl-carnitines were associated with PM-D-induced liver injury. Enrichment analyses of metabolic pathways revealed tht linolenic acid and linoleic acid metabolism, carnitine synthesis, oxidation of branched-chain fatty acids, and six other metabolic pathways were significantly changed. Comprehensive analysis revealed that the hepatotoxicity caused by PM-D was closely related to cholestasis, mitochondrial damage, oxidative stress and energy metabolism, and lipid metabolism disorders. CONCLUSIONS: In this study, the hepatotoxicity mechanisms of PM-D were comprehensively identified through an integrated spatially resolved metabolomics and network toxicology strategy, providing a theoretical foundation for the toxicity mechanisms of PM and its safe clinical application.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fallopia multiflora , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Fallopia multiflora/química , Fallopia multiflora/toxicidad , Metabolómica , Ratones , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR , Pez Cebra
16.
Appl Microbiol Biotechnol ; 106(9-10): 3735-3749, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35554627

RESUMEN

The depletion of Bacteroides in the gut is closely correlated with the progression of alcoholic liver disease (ALD). This study aimed to identify Bacteroides strains with protective effects against ALD and evaluate the synergistic effects of Bacteroides and pectin in this disease. Mice were fed Lieber-DeCarli alcohol diet to establish an experimental ALD model and pre-treated with 4 Bacteroides strains. The severity of the liver injury, hepatic steatosis, and inflammation was evaluated through histological and biochemical assays. We found that Bacteroides fragilis ATCC25285 had the best protective effects against ALD strains by alleviating both ethanol-induced liver injury and steatosis. B. fragilis ATCC25285 could counteract inflammatory reactions in ALD by producing short-chain fat acids (SCFAs) and enhancing the intestinal barrier. In the subsequent experiment, the synbiotic combination of B. fragilis ATCC25285 and pectin was evaluated and the underlying mechanisms were investigated by metabolomic and microbiome analyses. The combination elicited superior anti-ALD effects than the individual agents used alone. The synergistic effects of B. fragilis ATCC25285 and pectin were driven by modulating gut microbiota, improving tryptophan metabolism, and regulating intestinal immune function. Based on our findings, the combination of B. fragilis ATCC25285 and pectin can be considered a potential treatment for ALD. KEY POINTS: • B. fragilis ATCC25285 was identified as a protective Bacteroides strain against ALD. • The synbiotic combination of B. fragilis and pectin has better anti-ALD effects. • The synbiotic combination modulates gut microbiota and tryptophan metabolism.


Asunto(s)
Bacteroides , Hepatopatías Alcohólicas , Animales , Etanol/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/prevención & control , Ratones , Ratones Endogámicos C57BL , Pectinas/metabolismo , Triptófano/metabolismo
17.
Environ Sci Pollut Res Int ; 29(27): 41520-41533, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35094274

RESUMEN

The application of organic fertilizer can improve soil fertility and maintain soil biodiversity. Soil enzyme activity can reflect the relationship between microbial nutrient demand and environmental nutrient availability. The experiment was established with a split-plot design, which included two main plots and two subplots. The main plots were 3 nitrogen levels (0, 150, 300 kg N ha-1). The two subplots were chemical fertilizer alone and combination of manure and inorganic application; the soil enzyme activity and chemical properties of each treatment were measured and analyzed. In the study, ecological enzyme stoichiometry was used to study the limitation of microbial resources in dryland wheat system. The results showed that the combined application of manure and chemical fertilizers did not significantly increase the activities of soil C, N and P cycling-related enzymes but decreased the activities of soil L-leucine aminopeptidase (LAP). Long-term application of organic fertilizer and mineral fertilizer significantly increased the accumulation of soil organic carbon (SOC) and nitrogen (TN) and increased soil microbial biomass (MBC, MBN). Organic fertilizer treatment significantly increased soil available phosphorus (AP) and soil NO3--N contents, and decreased SOC/AP and TN/AP, but had no significant changes under different nitrogen application levels (N0, N1, N2). GHG emissions were increaseed with the amount of nitrogen applied, the addition of manure did not significantly increase the CO2 and N2O emissions, and soil organic matter mineralization and gas emission fluxes decreased at ripen stage. The C-acquiring enzyme was negatively correlated with N-acquiring enzyme but positively correlated with P-acquiring enzyme. The microbial limiting effect of C and P on microbial metabolism becomes increasingly intense as the reproductive period progresses. Redundancy analysis of soil enzyme activities and chemical properties showed that soil TN and MBN could better explain the variation characteristics of soil enzyme activities. Therefore, the study of soil extracellular enzyme stoichiometry and microbial nutrient restriction can give us a more comprehensive understanding of the soil environment. There are more implications can be given under different nitrogen management modes and different growth stages. The results also provided an effective theoretical basis for regulating the changes of soil microbial environment.


Asunto(s)
Fertilizantes , Suelo , Agricultura/métodos , Carbono/análisis , China , Fertilizantes/análisis , Estiércol/análisis , Nitrógeno/análisis , Fósforo/análisis , Lluvia , Suelo/química , Microbiología del Suelo , Triticum
18.
IEEE Micro ; 42(5): 89-98, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37008678

RESUMEN

FPGA accelerators offer performance and efficiency gains by narrowing the scope of acceleration to one algorithmic domain. However, real-life applications are often not limited to a single domain, which naturally makes Cross-Domain Multi-Acceleration a crucial next step. The challenge is, existing FPGA accelerators are built upon their specific vertically-specialized stacks, which prevents utilizing multiple accelerators from different domains. To that end, we propose a pair of dual abstractions, called Yin-Yang, which work in tandem and enable programmers to develop cross-domain applications using multiple accelerators on a FPGA. The Yin abstraction enables cross-domain algorithmic specification, while the Yang abstraction captures the accelerator capabilities. We also develop a dataflow virtual machine, dubbed XLVM, that transparently maps domain functions (Yin) to best-fit accelerator capabilities (Yang). With six real-world cross-domain applications, our evaluations show that Yin-Yang unlocks 29.4× speedup, while the best single-domain acceleration achieves 12.0×.

19.
Chin Med ; 16(1): 51, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217329

RESUMEN

BACKGROUND: The raw and processed roots of Polygonum multiflorum Thunb (PM) are commonly used in clinical practice to treat diverse diseases; however, reports of hepatotoxicity induced by Polygoni Multiflori Radix (PMR) and Polygoni Multiflori Radix Praeparata (PMRP) have emerged worldwide. Thus, it is necessary for researchers to explore methods to improve quality standards to ensure their quality and treatment effects. METHODS: In the present study, an ultra-high performance liquid chromatography triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) method was optimized and validated for the determination of dianthrones in PMR and PMRP using bianthronyl as the internal standard. Chromatographic separation with a gradient mobile phase [A: acetonitrile and B: water containing 0.1% formic acid (v/v)] at a flow rate of 0.25 mL/min was achieved on an Agilent ZORBAX SB-C18 column (2.1 mm × 50 mm, 1.8 µm). The triple quadrupole mass spectrometer (TQMS) was operated in negative ionization mode with multiple reaction monitoring for the quantitative analysis of six dianthrones. Moreover, compounds 5 and 6 were further evaluated for their cytotoxicity in HepaRG cells by CCK-8 assay. RESULTS: The UHPLC-QQQ-MS/MS method was first developed to simultaneously determine six dianthrones in PMR and PMRP, namely, polygonumnolides C1-C4 (1-4), trans-emodin dianthrones (5), and cis-emodin dianthrones (6). The contents of 1-6 in 90 batches of PMR were in the ranges of 0.027-19.04, 0.022-13.86, 0.073-15.53, 0.034-23.35, 0.38-83.67 and 0.29-67.00 µg/g, respectively. The contents of 1-6 in 86 batches of commercial PMRP were in the ranges of 0.020-13.03, 0.051-8.94, 0.022-7.23, 0.030-12.75, 0.098-28.54 and 0.14-27.79 µg/g, respectively. Compounds 1-4 were almost completely eliminated after reasonable processing for 24 h and the contents of compounds 5 and 6 significantly decreased. Additionally, compounds 5 and 6 showed inhibitory activity in HepaRG cells with IC50 values of 10.98 and 15.45 µM, respectively. Furthermore, a systematic five-step strategy to standardize TCMs with endogenous toxicity was proposed for the first time, which involved the establishment of determination methods, the identification of potentially toxic markers, the standardization of processing methods, the development of limit standards and a risk-benefit assessment. CONCLUSION: The results of the cytotoxicity evaluation of the dianthrones indicated that trans-emodin dianthrones (5) and cis-emodin dianthrones (6) could be selected as toxic markers of PMRP. Taking PMR and PMRP as examples, we hope this study provides insight into the standardization and internationalization of endogenous toxic TCMs, with the main purpose of improving public health by scientifically using TCMs to treat diverse complex diseases in the future.

20.
Artículo en Inglés | MEDLINE | ID: mdl-34279183

RESUMEN

In this study, 241 vegetable-oil food samples were collected from the Hangzhou market in China and analysed for fatty acid esters of 3- and 2-monochloropropanediol (3-MCPD and 2-MCPD) using non-derivative gas chromatography tandem mass spectrometry (GC-MS/MS). Food consumption data were taken from a food consumption survey of urban and rural residents in Hangzhou city performed in 2010-2011. Levels of 3-MCPD esters in edible oil ranged from not detected to 7.98 mg/kg, and the highest mean levels were found in tea seed oil, with concentrations of 2.94 mg/kg. Esters of 2-MCPD levels ranged from not detected to 4.03 mg/kg, and the highest mean levels were also found in tea seed oil, containing 1.49 mg/kg. The range of mean dietary intake of 3-MCPD esters in different groups of edible oil was from 0.096 to 1.54 µg/kg body weight (bw) per day, which is lower than the tolerable daily intake (TDI) established by the European Food Safety Authority (EFSA) (2 µg/kg bw/day). For people aged above 6 years old, the dietary intake of 3-MCPD from edible oil was 0.42 µg/kg bw per day (mean) and 1.22 µg/kg bw per day (P97.5). The range of mean dietary intake of 2-MCPD esters in different groups of edible oil was from 0.025 to 0.79 µg/kg bw/day, and 2-MCPD esters intake was 0.20 µg/kg bw per day (mean) and 0.60 µg/kg bw per day (P97.5). In addition, the dietary intake exposure to 3-MCPD and 2-MCPD esters for urban residents was lower than that for rural residents. The findings indicate that the potential health risks caused by dietary 3-MCPD esters from edible oils were of low concern for most of the Hangzhou residents. However, the exposure risk for consumers with excessive consumption of certain kind of edible oil calls for attention.


Asunto(s)
Aceites de Plantas/química , Glicoles de Propileno/química , China , Exposición Dietética , Análisis de los Alimentos , Contaminación de Alimentos , Humanos , Glicoles de Propileno/análisis , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA