Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 102(39): e34952, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773857

RESUMEN

BACKGROUND: Dyslipidemia is a global health concern with an increasing prevalence worldwide. Lycium barbarum (L. barbarum) is widely used as a medicinal and functional food, and evidence suggests that it may be beneficial for lipid management. In this study, we performed a systematic review and meta-analysis of randomized controlled trials investigating the effects of L. barbarum supplementation on lipid profiles in adults. METHODS: PubMed, China National Knowledge Infrastructure, The Cochrane Library, Web of Science, and Wanfang Database were searched from inception until October 2022. The random-effect model was applied, and the pooled effect sizes were expressed as mean differences (MDs) and 95% confidence intervals (CIs). RESULTS: The meta-analysis of 5 randomized controlled trials involving 259 subjects indicated that L. barbarum supplementation significantly decreased the triglyceride (TG) concentration (MD: 0.14 mmol/L, 95% CI: 0.08-0.20) and increased the high-density lipoprotein cholesterol concentration (HDL-C) (MD: -0.07 mmol/L, 95% CI: -0.13 to -0.01). However, the reductions in total cholesterol (TC) concentration (MD: 0.11 mmol/L, 95% CI: -0.37 to 0.59) and low-density lipoprotein cholesterol (LDL-C) concentration (MD: 0.21 mmol/L, 95% CI: -0.46 to 0.89) were not statistically significant. CONCLUSION: The present study showed that L. barbarum supplementation might have some beneficial effects on TG and HDL-C concentrations in adults, and L. barbarum fruit has an even greater effect on TG and HDL-C concentrations. Considering the sensitivity analyses and limitations of the study included, further large-scale studies are needed to confirm these findings.


Asunto(s)
Lycium , Humanos , Adulto , Triglicéridos , HDL-Colesterol , LDL-Colesterol , Suplementos Dietéticos
2.
Int J Food Sci Nutr ; 74(2): 234-246, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37016780

RESUMEN

Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite, has been shown to aggravate cardiovascular disease. However, the mechanisms of TMAO in the setting of cardiovascular disease progress remain unclear. Here, we aim to investigate the effects of TMAO on atherosclerosis (AS) development and the underlying mechanisms. Apoe -/- mice received choline or TMAO supplementation in a normal diet and a western diet for 12 weeks. Choline or TMAO supplementation in both normal diet and western diet significantly promoted plaque progression in Apoe-/- mice. Besides, serum lipids levels and inflammation response in the aortic root were enhanced by choline or TMAO supplementation. In particular, choline or TMAO supplementation in the western diet changed intestinal microbiota composition and bile acid metabolism. Therefore, choline or TMAO supplementation may promote AS by modulating gut microbiota in mice fed with a western diet and by other mechanisms in mice given a normal diet, even choline or TMAO supplementation in a normal diet can promote AS.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Ratones , Animales , Dieta Occidental/efectos adversos , Colina/metabolismo , Colina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Metilaminas , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Suplementos Dietéticos , Apolipoproteínas E/genética
3.
Mol Med Rep ; 27(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36734267

RESUMEN

Pueraria Lobata Radix (P. Lobata Radix) is an edible traditional Chinese medicine that contains various active compounds. Proteins from P. Lobata Radix have become the subject of increased interest in recent years. In evaluating the whitening effect on the skin, the present study found that the P. Lobata Radix water­soluble total protein extract (PLP) had the strongest inhibitory effect on tyrosinase activity. In the present study, the anti­melanogenic effect of PLP and the inhibitory effect on B16 melanoma cells were investigated. PLP significantly reduced the tyrosinase activity and melanin content in B16 melanoma cells. Mechanistically, PLP inhibited melanogenesis by decreasing the expression of tyrosinase, tyrosinase­related protein (TRP)­1 and TRP­2 through downregulation of the microphthalmia­associated transcription factor (MITF) gene, which was mediated by inhibition of p38 mitogen­activated protein kinase signaling. In addition, PLP inhibited cell viability and triggered apoptosis of B16 cells in a dose­dependent manner. Exposure to PLP reduced the mitochondrial membrane potential (MMP) and decreased ATP generation, leading to mitochondria­related apoptosis of B16 melanoma cells. The expression levels of succinate dehydrogenase (SDH) and its two related subunits (SDHA and SDHB) were downregulated significantly by PLP, which may be associated with the regulation of mitochondrial energy metabolism by PLP. These results may explain why MMP collapse and reduced ATP generation were observed in B16 melanoma cells treated with PLP. Finally, the present study demonstrated that the inhibition of melanin synthesis by PLP was correlated with the regulation of antioxidant enzymes to reduce reactive oxygen species levels. These results suggested that PLP inhibits melanogenesis by downregulating the expression of MITF­related melanogenic enzymes and triggering apoptosis through mitochondria­related pathways.


Asunto(s)
Melanoma Experimental , Pueraria , Animales , Adenosina Trifosfato , Apoptosis , Línea Celular Tumoral , Melaninas , Melanoma Experimental/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Mitocondrias/metabolismo , Monofenol Monooxigenasa/metabolismo , Ratones
4.
J Ethnopharmacol ; 300: 115716, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36122792

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A. Mey (PG) is famous for "Qi-tonifying" effect, which has a medicinal history of more than 2 millennia. Modern pharmacology has confirmed that the "Qi-tonifying" effect of PG may be closely related to its pharmacological properties such as anti-oxidation, antineoplastic and treatment of cardiovascular disease. As one of the earliest cells affected by oxidative stress, RBCs are widely used in the diagnosis of diseases. Ginseng polysaccharide (GPS), is one of the major active components of PG, which plays an important role in resisting oxidative stress, affecting energy metabolism and other effects. However, the molecular mechanism explaining the "Qi-tonifying" effect of GPS from the perspective of RBCs oxidative damage has not been reported. AIM OF THE STUDY: This study aimed to investigate the protective effect of GPS on oxidatively damaged RBCs using in vitro and in vivo models and explore the molecular mechanisms from the perspective of glycolysis and gluconeogenesis pathways. To provides a theoretical basis for the future research of antioxidant drugs. MATERIALS AND METHODS: Established three different in vitro and in vivo research models: an in vitro model of RBCs exposed to hydrogen peroxide (H2O2) (40 mM), an in vivo model of RBCs from rats subjected to exhaustive swimming, and an in vitro model of BRL-3A cells exposed to H2O2 (25 µM). All three models were also tested in the presence of different concentrations of GPS. RESULTS: The findings showed that GPS was the most potent antagonist of H2O2-induced hemolysis and redox inbalance in RBCs. In exhaustive exercise rats, GPS ameliorated RBVs hemolysis, including reducing whole-blood viscosity (WBV), improving deformability, oxygen-carrying and -releasing capacities, which was related to the enhancing of antioxidant capacity. Moreover, GPS promoted RBCs glycolysis in rats with exhaustive exercise by recovering the activities of glycolysis-related enzymes and increasing band 3 protein expression, thereby regulating the imbalance of energy metabolism caused by oxidative stress. Furthermore, we demonstrated that GPS improved antioxidant defense system, enhanced energy metabolism, and regulated gluconeogenesis via activating PPAR gamma co-activator 1 alpha (PGC-1α) pathway in H2O2-exposed BRL-3A cells. Mechanistically, GPS promoted glycolysis and protected RBCs from oxidative injury was partly dependent on the regulation of gluconeogenesis, as inhibition of gluconeogenesis by metformin (Met) attenuates the regulation of antioxidant enzymes and key enzymes of glycolytic by GPS in exhaustive exercise rats. CONCLUSION: This study demonstrates that GPS protects RBCs from oxidative stress damage by promoting RBCs glycolysis and liver gluconeogenesis pathways. These results may contribute to the study of new RBCs treatments to boost antioxidant capacity and protect RBCs against oxidative stress.


Asunto(s)
Metformina , Panax , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Eritrocitos , Gluconeogénesis , Glucólisis , Hemólisis , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Metformina/farmacología , Estrés Oxidativo , Oxígeno/metabolismo , PPAR gamma/metabolismo , Polisacáridos/farmacología , Ratas
5.
Nutrients ; 14(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501095

RESUMEN

Atherosclerosis (AS) is a chronic inflammatory disease that serves as a common pathogenic underpinning for various cardiovascular diseases. Although high circulating branched-chain amino acid (BCAA) levels may represent a risk factor for AS, it is unclear whether dietary BCAA supplementation causes elevated levels of circulating BCAAs and hence influences AS, and the related mechanisms are not well understood. Here, ApoE-deficient mice (ApoE-/-) were fed a diet supplemented with or without BCAAs to investigate the effects of BCAAs on AS and determine potential related mechanisms. In this study, compared with the high-fat diet (HFD), high-fat diet supplemented with BCAAs (HFB) reduced the atherosclerotic lesion area and caused a significant decrease in serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels. BCAA supplementation suppressed the systemic inflammatory response by reducing macrophage infiltration; lowering serum levels of inflammatory factors, including monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6); and suppressing inflammatory related signaling pathways. Furthermore, BCAA supplementation altered the gut bacterial beta diversity and composition, especially reducing harmful bacteria and increasing probiotic bacteria, along with increasing bile acid (BA) excretion. In addition, the levels of total BAs, primary BAs, 12α-hydroxylated bile acids (12α-OH BAs) and non-12α-hydroxylated bile acids (non-12α-OH BAs) in cecal and colonic contents were increased in the HFB group of mice compared with the HFD group. Overall, these data indicate that dietary BCAA supplementation can attenuate atherosclerosis induced by HFD in ApoE-/- mice through improved dyslipidemia and inflammation, mechanisms involving the intestinal microbiota, and promotion of BA excretion.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Aminoácidos de Cadena Ramificada/metabolismo , Aterosclerosis/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos y Sales Biliares , Colesterol , Administración Oral , Ratones Endogámicos C57BL
6.
Front Microbiol ; 13: 920277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935188

RESUMEN

Branched-chain amino acids (BCAAs), essential amino acids for the human body, are mainly obtained from food. High levels of BCAAs in circulation are considered as potential markers of metabolic-associated fatty liver disease (MAFLD) in humans. However, there are conflicting reports about the effects of supplement of BCAAs on MAFLD, and research on BCAAs and gut microbiota is not comprehensive. Here, C57BL/6J mice were fed with a high-fat diet with or without BCAAs to elucidate the effects of BCAAs on the gut microbiota and metabolic functions in a mouse model of MAFLD. Compared to high-fat diet (HFD) feeding, BCAA supplementation significantly reduced the mouse body weight, ratio of liver/body weight, hepatic lipid accumulation, serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and alanine aminotransferase (ALT), and the expressions of the lipogenesis-related enzymes Fas, Acc, and Scd-1 and increased expressions of the lipolysis-related enzymes Cpt1A and Atgl in the liver. BCAAs supplementation also counteracted HFD-induced elevations in serum BCAAs levels by stimulating the enzymatic activity of BCKDH. Furthermore, BCAAs supplementation markedly improved the gut bacterial diversity and altered the gut microbiota composition and abundances, especially those of genera, in association with MAFLD and BCAAs metabolism. These data suggest that BCAA treatment improves HFD-induced MAFLD through mechanisms involving intestinal microbes.

7.
Phytomedicine ; 105: 154372, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932609

RESUMEN

BACKGROUND: Huanglian ointment exhibits clinical efficacy for repairing skin barriers and inhibiting skin inflammation, and has been used to ameliorate eczema for many years. However, the active components and mechanism of Huanglian ointment have not yet been elucidated. PURPOSE: This study aimed to demonstrate the main active components and molecular mechanisms of Huanglian ointment for the treatment of eczema. METHODS: The main active components of Huanglian ointment were identified by gas chromatography-mass spectrometry. Network pharmacology approach and molecular docking techniques to predict the potential molecular mechanisms of Huanglian ointment alleviating eczema. Furthermore, Biostir-AD®-induced guinea pigs and tumor necrosis α (TNF-α)/interferon γ (IFN-γ)-induced HaCaT cells were employed to investigate the effectiveness and mechanisms of Huanglian ointment using histopathological staining, enzyme-linked immunosorbent assay, MTT assay, and western blot analysis. RESULTS: Fourteen chemistry components were identified in Huanglian ointment. In total, 78 intersecting gene targets were identified between Huanglian ointment and eczema, including Jun, inflammatory regulators, and chemokine factors. Intersecting gene targets were enriched for cytokine and chemokine receptor binding, and inflammatory related signaling pathways. The molecular docking results showed that the identified components had a stable binding conformation with core targets. In vivo experiments showed that Huanglian ointment markedly ameliorated eczema-like skin lesions, restored histopathological morphology, and decreased levels of TNF-α, IFN-γ, and interleukin 6. Moreover, Huanglian ointment effectively protected HaCaT cells against TNF-α/IFN-γ-induced cell death and overproduction of thymus- and activation-regulated chemokine, macrophage-derived chemokine, and regulated upon activation normal T cell-expressed and secreted factor. Subsequently, we found that Huanglian ointment repaired skin barriers by affecting c-Jun, JunB, and filaggrin expression, and suppressed inflammatory response by inhibiting AGE-RAGE signaling pathway, both in vivo and in vitro. CONCLUSION: Our results demonstrated that Huanglian ointment repaired skin barriers and inhibited inflammation by maintaining the balance of c-Jun and JunB, and suppressing AGE-RAGE signaling pathway, thereby relieving eczema. These findings providing a molecular basis for treatment of eczema by Huanglian ointment.


Asunto(s)
Eccema , Queratinocitos , Animales , Quimiocinas , Medicamentos Herbarios Chinos , Cobayas , Inflamación , Interferón gamma , Simulación del Acoplamiento Molecular , Pomadas , Transducción de Señal , Factor de Necrosis Tumoral alfa
8.
J Ethnopharmacol ; 283: 114739, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34648903

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A. Meyer is a type of herbal plant that has frequently been used in many Asian countries to treat a variety of diseases. Ginseng is considered to exhibit anti-inflammatory and anti-oxidative pharmacological effects. However, the specific mechanism is still not entirely understood. AIM OF THE STUDY: In this study, we investigated if ginseng extract could attenuate inflammation and oxidative stress in RAW264.7 cells and in dextran sulfate sodium (DSS)-induced colitis mouse model. MATERIALS AND METHODS: RAW264.7 cells and LPS were used to develop inflammatory and oxidative cell models. C57/6J male mice and DSS were used to construct the animal models. O2-, mitochondria number, and mitochondrial membrane potential were analyzed using fluorescent probes and fluorescence microscopy. Reactive oxygen species and nitric oxide generation were detected with probes and microplate readers. The secreted amounts of inflammatory cytokines were measured by enzyme-linked immunosorbent assay kits. Protein expression levels in the cytoplasm and nucleus were measured by western blotting analyses. Quantitative real-time PCR (qRT-PCR) was used to determine the changes in mRNA levels. Autophagosome accumulation was analyzed by transmission electron microscopy. A p62-specific siRNA was used to evaluate the effect of p62 on the anti-oxidative function of ginseng root extract (GRE). Asperuloside and SP600125 were used to confirm the involvement of the MAPK/NF-κB signaling pathway. RESULTS: We performed a systematic analysis of the anti-inflammatory, anti-oxidative, and autophagy regulatory mechanisms of GRE in LPS-treated RAW264.7 cells. GRE considerably reduced the levels of nitric oxide, TNF-α, and IL-6 secreted by LPS-treated cells. GRE treatments dose-dependently upregulated IL-10 mRNA levels and decreased IL-6 and IL-1ß mRNA levels in LPS-treated cells. Similar to the NF-κB and JNK inhibitors, GRE treatment significantly inhibited NF-κB activity and phosphorylation of MAPKs (JNK, ERK-1/2, and p38). Additionally, GRE treatment remarkably decreased LPS-triggered reactive oxygen species production and mitochondrial dysfunction by motivating Nrf2 nuclear translocation by enhancing phosphorylated p62. Knockdown of p62 resulted in the loss of GRE anti-oxidative ability. Autophagy was strongly induced by GRE via the Akt-mTOR signaling pathway, relieving excessive oxidation, mitochondrial dysfunction, and inflammation, while enhancing Beclin-1, LC3 II, and Atg7 protein expression. Furthermore, GRE alleviated the degree of injury, inflammatory cytokine production, and regulated the relative signaling pathway in DSS-induced colitis. CONCLUSIONS: GRE can exert both anti-inflammatory and anti-oxidative functions by targeting the MAPK/NF-κB and p62-Nrf2-Keap1 pathways, as well as autophagy, in vitro and vivo.


Asunto(s)
Antiinflamatorios/farmacología , Estrés Oxidativo/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Autofagia/efectos de los fármacos , Sulfato de Dextran , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Inflamación/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
9.
Nat Prod Res ; 36(11): 2875-2877, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33980087

RESUMEN

The inhibitory effect of three degraded sesquiterpene lactones, iso-seco-tanapartholide, arteludooicinolide A and millifolide A isolated from Achillea millefolium L., on anti-human lung cancer cells was examined using MTT and reporter gene assays. Millifolide A has significant inhibitory effects on the proliferation of human lung cancer cells probably through inducing cell apoptosis.


Asunto(s)
Achillea , Neoplasias Pulmonares , Sesquiterpenos , Línea Celular , Proliferación Celular , Éter/farmacología , Humanos , Lactonas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología
10.
J Tradit Chin Med ; 40(5): 766-773, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33000577

RESUMEN

OBJECTIVE: To investigate the effect of Renshenwuweizi decoction (RSWWZ decoction) on the growth of non-small cell lung cancer cells in vitro. METHODS: A549 non-small cell lung cancer cells were divided into two groups: control and RSWWZ decoction treatment groups. Cell Counting Kit-8 was used to measure the inhibitory effect of RSWWZ decoction on the growth of A549 cells. 4', 6-diamidino-2-phenylindole staining and Annexin V-fluorescein isothiocyanate/propidium iodide double staining were used to investigate apoptosis in A549 cells following RSWWZ decoction treatment, and the mitochondrial membrane potential of treated cells was detected with Rhodamine 123. Cell cycle progression was analyzed by flow cytometry. The mRNA levels of p53, Bax, B-cell lymphoma-2 (Bcl-2) and p21 were measured by quantitative real-time reverse transcription polymerase chain reaction. The protein expressions of p53, Bax, Bcl-2, p21, cyclin-dependent kinases 2 (CDK2), and cyclin A were detected by Western blot. RESULTS: RSWWZ decoction reduced the viability of A549 cells in a dose-dependent manner by inducing apoptosis and decreased mitochondrial membrane potential. RSWWZ decoction increased p53 and Bax expression and decreased Bcl-2 expression in a dose-dependent manner. RSWWZ decoction also induced an S-phase cell cycle arrest by increasing p21 and decreasing cyclin A and CDK2 expression. CONCLUSION: In vitro experiments revealed that the Renshenwuweizi decoction-induced decrease in A549 cell proliferation was achieved by inducing apoptosis and S-phase cell cycle arrest via the p53 pathway. These findings provide the experimental basis for Renshenwuweizi decoction treatment of lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/fisiopatología , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/genética
11.
J Ethnopharmacol ; 263: 113223, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32791294

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Clinical applications and pharmacological research suggest that Dioscorea opposita Thunb. (Chinese yam), a well-known traditional Chinese medicine which has been used for more than 2000 years to nourish kidney-yang and protect the male reproductive system, might be efficacious for the treatment of erectile dysfunction (ED). AIM OF THE STUDY: This study aimed to investigate the active component extract of Chinese yam, determine its effectiveness in hydrocortisone-induced "kidney-yang deficiency syndrome" (KDS-Yang) rats and in oxidatively damaged TM3 cells and explore the underlying mechanism on restoring erectile function. MATERIALS AND METHODS: We clarified the Chinese yam cold-soaking extract (CYCSE) as the main active extract of Chinese yam by a CCK8 assay and further identified its composition. The KDS-Yang rats were induced by intragastric administration of hydrocortisone. After 10 d of CYCSE intervention, cavernous and testis morphology were stained with hematoxylin and eosin. Inducible nitric oxide synthase (iNOS), cyclic guanosine monophosphate (cGMP), testosterone, 8-hydroxy-2-deoxyguanosine (8-OHdG) and superoxide dismutase (SOD) levels were detected by enzyme-linked immunosorbent assay kits. Leydig cells were performed using immunohistochemistry. Reactive oxygen species were measured using a DCFH-DA fluorescent probe, and testicular collagenous fibers were stained with a Masson kit. Detection of testicular apoptosis was performed by a TUNEL assay. Nrf2 and NQO1 mRNA expression levels were measured by qRT-PCR. The protein expression levels of Nrf2, HO-1, TGF-ß1 and SMAD2/3 were analyzed by Western blot. RESULTS: We demonstrated in KDS-Yang rats and oxidatively damaged TM3 cells that CYCSE successfully restored erectile function through ameliorating testicular function. Our data suggested that CYCSE can stimulate the NO/cGMP pathway and restore the cavernous morphology to protect against KDS-Yang-induced ED. It also protected testis morphology, increased Leydig cell proliferation and stimulated testosterone secretion. In the damaged testes, excessive increases in 8-OHdG and inhibition of SOD activity were ameliorated, and the Nrf2/HO-1 signaling pathway was enhanced after treatment with CYCSE, indicating that the antioxidant defense system was activated. These findings were also validated in vitro. Additionally, fibrosis of the testes and TM3 cells was reversed by CYCSE through the TGF-ß1/SMAD2/3 pathway. CONCLUSION: CYCSE has a therapeutic effect on KDS-Yang-induced ED, and the mechanism includes stimulation of testosterone secretion, resistance to oxidative stress and prevention of fibrosis. These findings provide a new scientific verification for the application of Chinese yam in the treatment of KDS-Yang-induced ED.


Asunto(s)
Dioscorea , Disfunción Eréctil/prevención & control , Hidrocortisona/toxicidad , Enfermedades Renales/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Deficiencia Yang/tratamiento farmacológico , Animales , Frío , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Disfunción Eréctil/etiología , Disfunción Eréctil/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Masculino , Estrés Oxidativo/fisiología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Testículo/efectos de los fármacos , Testículo/metabolismo , Deficiencia Yang/inducido químicamente , Deficiencia Yang/metabolismo
12.
J Affect Disord ; 272: 66-76, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32379622

RESUMEN

BACKGROUND: The brain-gut-microbiota axis plays a role in the pathogenesis of stress-related psychiatric disorders; however, its role in the resilience versus susceptibility after stress remains unclear. Dietary nutrient betaine is suggested to affect the gut microbiome. Here, we examined whether betaine supplementation can affect anhedonia-like phenotype in mice subjected to chronic social defeat stress (CSDS). METHODS: CSDS was performed during betaine supplementation. Sucrose preference test and 16S rRNA analysis of fecal samples were performed. RESULTS: CSDS did not produce an anhedonia-like phenotype in the betaine-treated mice, but did induce an anhedonia-like phenotype in water-treated mice. Furthermore, CSDS treatment did not alter the plasma levels of interleukin-6 (IL-6) of betaine-treated mice whereas CSDS caused higher plasma levels of IL-6 in water-treated mice. Betaine supplementation ameliorated the abnormal diversity and composition of the microbiota in the host gut after CSDS. At the genus level, CSDS caused marked increases in the several bacteria of water-treated mice, but not betaine-treated mice. CSDS increased levels of short-chain fatty acids (i.e., succinic acid and acetic acid) in feces from water-treated mice, but not betaine-treated mice. Interestingly, there are positive correlations between short-chain fatty acids (i.e., succinic acid, acetic acid, butyric acid) and several bacteria among the groups. LIMITATIONS: Specific microbiome were not determined. CONCLUSIONS: These findings suggest that betaine supplementation contributed to resilience to anhedonia in mice subjected to CSDS through anti-inflammation action. Therefore, it is likely that betaine could be a prophylactic nutrient to prevent stress-related psychiatric disorders.


Asunto(s)
Microbioma Gastrointestinal , Animales , Betaína/farmacología , Encéfalo , Suplementos Dietéticos , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Derrota Social , Estrés Psicológico
13.
J Ethnopharmacol ; 247: 112213, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31562951

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Historical literature and pharmacological studies demonstrate that ginseng, one of the most popular herbal medicines in China, holds potential benefits for Parkinson's disease (PD). AIM OF THE STUDY: Studies in Drosophila melanogaster (Dm) have highlighted mitochondrial dysfunction upon loss of PTEN-induced putative kinase 1 (PINK1) as a central mechanism of PD pathogenesis. Using PINK1B9 mutant Dm, we aimed to explore the therapeutic action of ginseng total protein (GTP) on PD and provide in-depth scientific interpretation about the traditional efficacy of ginseng. MATERIALS AND METHODS: We first used gel chromatography to purify GTP and confirmed its molecular weight by SDS-PAGE. Effects of GTP on PINK1B9 mutants, which were supplied with standard diet from larvae to adult stages, were assayed in flies aged 3-6 (I), 10-15 (II), and 20-25 (III) days. Parkinson-like phenotypes were analyzed by evaluating lifespan, dopaminergic neurons, dopamine levels, and locomotor ability. Mitochondrial function was assessed by evaluating ATP production, respirometry, and mitochondrial DNA. In addition, reactive oxygen species were measured using dihydroethidium and 2',7'-dichlorodihydrofluorescein diacetate staining. PD-related oxidative stress was simulated by paraquat and rotenone, and mitochondrial membrane potential was measured using JC-10 reagent. Protein and mRNA expression was detected by Western blot and real-time quantitative reverse transcription polymerase chain reaction, respectively. RESULTS: This study demonstrates for the first time that GTP treatment delays the onset of a Parkinson-like phenotype in PINK1B9 Dm, including prolongation of lifespan and rescue of climbing ability, as well as rescue of the progressive loss of a cluster of dopaminergic neurons in the protocerebral posterior lateral 1 region, which was accompanied by a significant increase of dopamine content in the brain. In addition, GTP notably reduced the penetrance of abnormal wing position, indicating a strong inhibitory effect on indirect flight muscle degeneration. We further showed that GTP could promote maintenance of mitochondrial function and protect mitochondria from PD-associated oxidative stress by activating the mitochondrial unfolded protein response (UPRmt). CONCLUSIONS: GTP protected against mitochondrial dysfunction and neurodegeneration by inducing UPRmt in the Dm PINK1B9 model of PD. Our results suggest that GTP is a promising candidate for PD, and reveal a new mechanism by which ginseng is neuroprotective.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fármacos Neuroprotectores/farmacología , Panax/química , Enfermedad de Parkinson/tratamiento farmacológico , Proteínas de Plantas/farmacología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas de Plantas/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada/efectos de los fármacos
14.
Neuropsychopharmacol Rep ; 39(3): 247-251, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31132231

RESUMEN

AIMS: Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. Although diet may influence the development of PD, the precise mechanisms underlying relationship between diet and PD pathology are unknown. Here, we examined whether dietary intake of glucoraphanin (GF), the precursor of a natural antioxidant sulforaphane in cruciferous vegetables, can affect the reduction of dopamine transporter (DAT) in the mouse striatum after repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). METHODS: Normal food pellet or 0.1% GF food pellet was given into male mice for 28 days from 8-week-old. Subsequently, saline (5 mL/kg × 3, 2-hour interval) or MPTP (10 mg/kg × 3, 2-hour interval) was injected into mice. Immunohistochemistry of DAT in the striatum was performed 7 days after MPTP injection. RESULTS: Repeated injections of MPTP significantly decreased the density of DAT-immunoreactivity in the mouse striatum. In contrast, dietary intake of 0.1% GF food pellet significantly protected against MPTP-induced reduction of DAT-immunoreactivity in the striatum. CONCLUSION: This study suggests that dietary intake of GF food pellet could prevent MPTP-induced dopaminergic neurotoxicity in the striatum of adult mice. Therefore, dietary intake of GF-rich cruciferous vegetables may have beneficial effects on prevention for development of PD.


Asunto(s)
Antioxidantes/uso terapéutico , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Glucosinolatos/uso terapéutico , Imidoésteres/uso terapéutico , Intoxicación por MPTP/tratamiento farmacológico , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Suplementos Dietéticos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Glucosinolatos/administración & dosificación , Glucosinolatos/farmacología , Imidoésteres/administración & dosificación , Imidoésteres/farmacología , Intoxicación por MPTP/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Oximas , Sulfóxidos
15.
Mol Med Rep ; 16(5): 6396-6404, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28849068

RESUMEN

Ginseng (Panax ginseng C.A Meyer) is a widely used herbal remedy, however, the majority of studies have focused on the roots, with less known about the aerial regions of the plant. As the stems and leaves are the primary aerial tissues, the present study characterized their transcriptional profiles using Illumina next­generation sequencing technology. The gene expression profiles and the functional genes of ginseng stems (GS) and leaves (GL) were analyzed during the leaf­expansion period. cDNA libraries of the GS and GL of 5­year­old ginseng plants were separately constructed. In the GS library, 38,000,000 sequencing reads were produced. These reads were assembled into 99,809 unique sequences with a mean size of 572 bp, and 57,371 sequences were identified based on similarity searches against known proteins. The assembled sequences were annotated using Gene Ontology terms, Clusters of Orthologous Groups classifications and Kyoto Encyclopedia of Genes and Genomes pathways. For GL, >118,000,000 sequencing reads were produced, which were assembled into 73,163 unique sequences, from which 50,523 sequences were identified. Additionally, several genes involved in the regulation of growth­related, stress­related, pathogenesis­related, and chlorophyll metabolism­associated proteins were found and expressed at high levels, with low expression levels of ginsenoside biosynthesis enzymes also found. The results of the present study provide a valuable useful sequence resource for ginseng in general, and specifically for further investigations of the functional genomics and molecular genetics of GS and GL during early growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Panax/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Tallos de la Planta/genética , Transcriptoma , Clorofila/biosíntesis , Clorofila/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Ontología de Genes , Ginsenósidos/biosíntesis , Ginsenósidos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Panax/crecimiento & desarrollo , Panax/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo
16.
Mol Med Rep ; 15(6): 4382-4390, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28440415

RESUMEN

Reverse transcription­quantitative polymerase chain reaction (RT­qPCR) analysis relies on normalization against a consistently expressed reference gene. However, it has been reported that reference gene expression levels often vary markedly between samples as they are usually selected based solely on convention. The advent of RNA sequencing technology offers the opportunity to select reference genes with the least variability in steady­state transcript levels. To identify the most consistently stable genes, which are a prerequisite for obtaining reliable gene expression data, the present study analyzed transcriptomes from six Panax ginseng transcriptome data sets, representing six growth stages, and selected 21 candidate reference genes for screening using RT­qPCR. Of the 21 candidate genes, 13 had not been reported previously. The geNorm, NormFinder and BestKeeper programs were used to analyze the stability of the 21 candidate reference genes. The results showed that UDP­N­acetylgalactosamine transporter and nuclear transport factor 2 were likely to be the optimal combination of reference genes for use in investigations of ginseng. The novel reference genes were validated by correlating the gene expression profiles of four pathogenesis­related protein genes generated from RT­qPCR, with their expression levels calculated from the RNA sequencing data. The expression levels were well correlated, which demonstrated their value in performing RT­qPCR analyses in ginseng.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Transporte de Membrana/genética , Panax/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Uridina Difosfato/genética , Perfilación de la Expresión Génica/métodos , Estándares de Referencia , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética
17.
Mol Med Rep ; 14(2): 1404-12, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27278773

RESUMEN

Panax ginseng, a traditional Chinese medicine, is used worldwide for its variety of health benefits and its treatment efficacy. However, it is difficult to cultivate due to its vulnerability to environmental stresses. The present study provided the first report, to the best of our knowledge, of transcriptome analysis of ginseng at the leaf­expansion stage. Using the Illumina sequencing platform, >40,000,000 high­quality paired­end reads were obtained and assembled into 100,533 unique sequences. When the sequences were searched against the publicly available National Center for Biotechnology Information protein database using The Basic Local Alignment Search Tool, 61,599 sequences exhibited similarity to known proteins. Functional annotation and classification, including use of the Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases, revealed that the activated genes in ginseng were predominantly ribonuclease­like storage genes, environmental stress genes, pathogenesis-related genes and other antioxidant genes. A number of candidate genes in environmental stress­associated pathways were also identified. These novel data provide useful information on the growth and development stages of ginseng, and serve as an important public information platform for further understanding of the molecular mechanisms and functional genomics of ginseng.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Panax/crecimiento & desarrollo , Panax/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Transcriptoma , Biología Computacional/métodos , Ambiente , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Interacción Gen-Ambiente , Anotación de Secuencia Molecular , Panax/metabolismo , Hojas de la Planta/metabolismo , Análisis de Secuencia de ADN , Estrés Fisiológico/genética
18.
Biotechnol Lett ; 38(7): 1229-35, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27053083

RESUMEN

OBJECTIVES: To establish an efficient expression system for a fusion protein GST-pgLTP (Lipid Transfer Protein) and to test its antifungal activity. RESULTS: The nucleotide sequence of LTP gene was obtained from Panax ginseng using RT-PCR. The ORF of the cDNA is 363 bp, codING for a protein OF 120 amino acids with a calculated MW of 12.09 kDa. The pgLTP gene with a His6-tag at the C-terminus was cloned into the pGEX-6p1 vector to generate a GST-fusion pgLTP protein construct that was expressed in Escherichia coli Rosetta. Following purification by Ni-NTA, the fusion protein exhibited antifungal activity against five fungi found in ginseng. CONCLUSION: The fusion protein GST-pgLTP has activity against a broad spectrum of phytopathogenic fungi, and can potentially be adapted for production to combat fungal diseases that affect P. ginseng.


Asunto(s)
Proteínas Portadoras/metabolismo , Panax/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/clasificación , Antifúngicos/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Clonación Molecular , ADN Complementario , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/genética
19.
J Ethnopharmacol ; 153(2): 430-4, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24607495

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: American ginseng (Panax quinquefolium) is an obligate shade perennial plant that belongs to Araliaceae ginseng species, and is native to eastern USA and Canada. Ginseng proteins are reported to have several pharmaceutical properties. However, such properties of American ginseng proteins (AGP) have seldom been reported. Also, anti-fatigue properties of AGP have not been studied. Therefore, we examined the anti-fatigue effects of AGP in mice. MATERIALS AND METHODS: The molecular weight and protein contents of AGP were determined by SDS-PAGE, while the amino acid composition was analyzed by HPLC. The mice were divided into four groups. The control group was administered distilled water by gavage every day for 28 days. The other groups, designated as AGP treatment groups, were administered 125, 250 and 500 mg/kg of body weight, respectively of AGP by gavage every day for 28 days. Anti-fatigue activity was estimated using forced swimming test, and biochemical indices were determined using available kits. RESULTS: The subunit molecular weight of AGP ranged from 8-66 kD and the protein content measured by Bradford assay was 1.86 mg/mL. The forced swimming time of low, intermediate and high groups were found to be longer as compared to the control group. AGP significantly decreased blood lactate (BLA) and serum urea nitrogen (SUN) levels, and increased hepatic glycogen (GLU) level. Additionally, AGP lowered malondialdehyde (MDA) content and increased the levels of glutathione peroxidase (GPx) and superoxide dismutase (SOD). CONCLUSION: AGP shows anti-fatigue activity in mice, as measured by the physiological indices for fatigue.


Asunto(s)
Fatiga/tratamiento farmacológico , Panax , Extractos Vegetales/uso terapéutico , Proteínas de Plantas/uso terapéutico , Animales , Fatiga/fisiopatología , Femenino , Masculino , Ratones , Extractos Vegetales/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Raíces de Plantas , Distribución Aleatoria , Natación/fisiología , Resultado del Tratamiento
20.
Chem Biodivers ; 10(10): 1729-53, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24130020

RESUMEN

A series of new taxanes, 1-93, have been isolated, together with 37 known taxoids including Taxol(®) (paclitaxel) and cephalomannine, from the Canadian yew, Taxus canadensis (Taxaceae) in the past 30 years. These new taxoids possess various skeletons containing 5/7/6, 6/10/6, 6/5/5/6, 6/8/6, and 6/12 ring systems and six new taxanes with four novel skeletons, i.e., a taxane with a 6/6/8/6 ring system, a taxane with a [3.3.3] propellane skeleton, three taxanes with [3.3.3] [3.4.5] dipropellane sytems, as well as a novel taxane with a unique 5/5/4/6/6/6 hexacyclic skeleton, containing a unique [3.3.2] propellane, were isolated for the first time from natural sources. It should be emphasized that 13-acetyl-9-dihydrobaccatin III, a very useful starting material for the semisynthesis of Taxol(®) and Taxotere(®) , represents the most abundant taxane in the needles of this yew tree. These findings establish the above mentioned yew tree as significantly different from the remaining species. On the other hand, some chemical modifications on the taxanes isolated from this plant were carried out.


Asunto(s)
Extractos Vegetales/química , Taxus/química , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Isomerismo , Células MCF-7 , Conformación Molecular , Taxoides/química , Taxoides/aislamiento & purificación , Taxoides/toxicidad , Taxus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA