Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(2): 339-346, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523090

RESUMEN

Forest type and stand age are important biological factors affecting soil enzyme activities. However, the changes in soil enzyme activities across stand ages and underlying mechanisms under the two forest restoration strate-gies of plantations and natural secondary forests remain elusive. In this study, we investigated the variations of four soil enzyme activities including cello-biohydrolase (CBH), ß-1,4-glucosidase (ßG), acid phosphatase (AP) and ß-1,4-N-acetylglucosaminidase (NAG), which were closely associated with soil carbon, nitrogen, and phosphorus cycling, across Cunninghamia lanceolata plantations and natural secondary forests (5, 8, 21, 27 and 40 years old). The results showed that soil enzyme activities showed different patterns across different forest types. The acti-vities of AP, ßG and CBH in the C. lanceolata plantations were significantly higher than those in the natural secon-dary forests, and there was no significant difference in the NAG activity. In the plantations, AP activity showed a decreasing tendency with the increasing stand ages, with the AP activity in the 5-year-old plantations significantly higher than other stand ages by more than 62.3%. The activities of NAG and CBH decreased first and then increased, and ßG enzyme activity fluctuated with the increasing stand age. In the natural secondary forests, NAG enzyme activity fluctuated with the increasing stand age, with that in the 8-year-old and 27-year-old stand ages being significantly higher than the other stand ages by more than 14.9%. ßG and CBH enzyme activities increased first and then decreased, and no significant difference was observed in the AP activity. Results of the stepwise regression analyses showed that soil predictors explained more than 34% of the variation in the best-fitting models predicting soil enzyme activities in the C. lanceolata plantations and natural secondary forests. In conclusion, there would be a risk of soil fertility degradation C. lanceolata plantations with the increasing stand age, while natural secondary forests were more conducive to maintaining soil fertility.


Asunto(s)
Cunninghamia , Humanos , Adulto , Preescolar , Niño , Suelo , Bosques , Nitrógeno/análisis , Fósforo/análisis , Carbono/análisis , Microbiología del Suelo , China
2.
Am J Cardiol ; 211: 239-244, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979640

RESUMEN

Excessive calcium-phosphorus product (Ca-P product) in patients with chronic kidney disease (CKD) is associated with coronary artery calcification and coronary artery disease, but the relation between Ca-P product and coronary artery disease in non-CKD populations has rarely been reported. Therefore, we designed a cross-sectional study to investigate the role of Ca-P product in total coronary artery occlusion (TCAO) in a non-CKD population. We reviewed 983 patients who underwent coronary angiography at Guangyuan Central Hospital from February 2018 to January 2020. Ca-P product (mg2/dl2) was calculated as Ca (mmol/L) × 4 × P (mmol/L) × 3.1 and was analyzed as a continuous and tertiary variable. TCAO was defined as complete occlusion of any coronary artery by coronary angiography (thrombolysis in myocardial infarction flow grade 0). Statistical analysis was performed using univariate and multivariate logistic regression models and restricted cubic splines. Univariate logistic regression analysis showed a statistically significant association between Ca-P product and TCAO (odds ratio [OR] 0.97, 95% confidence interval [CI] 0.95 to 0.99, p <0.001). After stepwise adjustment for covariates, the risk of TCAO was reduced by 40% in the high versus low Ca-P group (OR 0.6, 95% CI 0.38 to 0.95, p = 0.031), and the risk of TCAO was predicted to decrease by 4% (OR 0.96, 95% CI 0.94 to 0.99, p = 0.006) for each unit increase in Ca-P product. Restricted cubic splines showed a nonlinear relation between Ca-P product and TCAO, with a significant decrease in the risk of TCAO after reaching 27.46 (nonlinear p = 0.047). In conclusion, in non-CKD populations, a higher Ca-P product (≥27.46 mg2/dl2) may help avoid TCAO.


Asunto(s)
Enfermedad de la Arteria Coronaria , Oclusión Coronaria , Insuficiencia Renal Crónica , Humanos , Calcio , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/complicaciones , Oclusión Coronaria/complicaciones , Oclusión Coronaria/diagnóstico , Oclusión Coronaria/epidemiología , Estudios Transversales , Fósforo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Factores de Riesgo
3.
Ying Yong Sheng Tai Xue Bao ; 31(11): 3597-3604, 2020 Nov.
Artículo en Chino | MEDLINE | ID: mdl-33300708

RESUMEN

We investigated soil C:N:P stoichiometry and nutrient dynamics of Cunninghamia lanceolata plantations at different stand ages (5, 8, 21, 27 and 40 years old) in Fujian Baisha Fores-try Farm. We measured the concentrations of soil total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), total calcium (Ca), total magnesium (Mg), and soil C:N:P stoichiometry at 0-10, 10-20, and 20-40 cm soil layers during different growth stages. The results showed that soil TC and TN concentrations and C:N remained unchanged during stand development. Soil TP content showed an increase-decrease-increase trend with increasing stand ages. Soil TP content was lowest, whereas C:P and N:P were highest at the mature stage of C. lanceolate plantation in the 0-10 and 10-20 cm soil layers. However, soil TP content showed no significant differences in all stand ages at the 20-40 cm soil layer. The contents of Ca and Mg were lowest at the mature stage of C. lanceolata stand. The TC was positively correlated with soil C:N, C:P and N:P. The TP was significantly and negatively correlated with soil C:P and N:P. Soil TP was a key factor regulating soil C:P and N:P stoichiometry. The development of mature plantation was mainly limited by soil P availability. To sustain the development of C. lanceolata plantations and improve nutrient cycling, phosphorus fertilizer could be applied during the rapid growth period of C. lanceolata. In addition, an appropriate extension of the rotation period of C. lanceolata plantation could facilitate soil nutrient restoration.


Asunto(s)
Cunninghamia , Nitrógeno/análisis , Nutrientes , Fósforo , Suelo
4.
Ying Yong Sheng Tai Xue Bao ; 31(4): 1088-1096, 2020 Apr.
Artículo en Chino | MEDLINE | ID: mdl-32530182

RESUMEN

Phosphorus (P) limitation is one of the major issues for the management of subtropical plantations. Understanding the effects of tree species transition from conifer to broadleaved trees on soil P fraction and availability in different soil layers are of great significance for the sustainable development of subtropical forests. We compared changes in soil chemical properties, P fraction and availability across 0-100 cm soil profile between Mytilaria laosensis and Cunninghamia lanceolata plantations, which were initially reforested from C. lanceolata plantation in the spring of 1993. The results showed that soil organic P content in both plantations decreased significantly with soil depth. Compared with C. lanceolata, the M. laosensis plantation significantly increased soil available P content by 35.7% and 86.2% in the 0-10 and 10-20 cm, respectively. The contents of soil labile P and moderately labile P decreased significantly with soil depth in both plantations. The contents of labile P and moderately labile P were significantly higher in the surface soil (0-20 cm), while the non-labile P in the 80-100 cm was increased by 13.6%, and the free iron content in the 20-80 cm significantly decreased. Results of redundancy analysis showed that dissolved organic carbon and free iron were the most important factors influencing P fraction in those plantations. Tree species transition from C. lanceolata to M. laosensis could change the pattern of soil P fraction in soil profile, and greatly enhance soil P availability.


Asunto(s)
Cunninghamia , Carbono , China , Bosques , Nitrógeno , Fósforo , Suelo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA