Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 21(1): 240, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37491290

RESUMEN

Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy caused by excessive proliferation of myeloblasts. Classical chemotherapies and cell transplantation therapies have remarkable efficacy in AML treatment; however, 30-40% of patients relapsed or had refractory disease. The resistance of AML is closely related to its inherent cytogenetics or various gene mutations. Recently, phytonanomedicine are found to be effective against resistant AML cells and have become a research focus for nanotechnology development to improve their properties, such as increasing solubility, improving absorption, enhancing bioavailability, and maintaining sustained release and targeting. These novel phytonanomedicine and mineral nanomedicine, including nanocrystals, nanoemulsion, nanoparticles, nanoliposome, and nanomicelles, offer many advantages, such as flexible dosages or forms, multiple routes of administration, and curative effects. Therefore, we reviewed the application and progress of phytomedicine in AML treatment and discussed the limitations and future prospects. This review may provide a solid reference to guide future research on AML treatment.


Asunto(s)
Leucemia Mieloide Aguda , Nanomedicina , Humanos , Leucemia Mieloide Aguda/patología , Protocolos de Quimioterapia Combinada Antineoplásica
2.
Cancer Cell Int ; 20: 379, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782437

RESUMEN

BACKGROUND: The roots of Salvia miltiorrhiza are used in traditional Chinese medicine (TCM) and have high medicinal value. Tanshinone IIA (Tan IIA) is the active ingredient of Salvia miltiorrhiza which can inhibit the growth of acute leukemia cell lines in vitro, although the mechanism remains unclear. METHODS: CCK-8 assays and BrdU stain were used to evaluate cell proliferation ability. Western blot analysis was used to detect protein expression. miR-497-5p expression level was detected by using qRT-PCR, and Annexin V-FITC/propidium iodide (PI) was used to detect cell apoptosis. RESULTS: Here we reported that Tan IIA could inhibit cell proliferation, induce cell cycle arrest, and promote cell apoptosis in acute myeloid leukemia (AML) cells. Thus, Tan IIA had the anti-cancer activity in AML cell lines, which was likely mediated by up-regulation of miR-497-5p expression. Our data further showed that in AML cells, the same effects were observed with overexpression of miR-497-5p by a miR-497-5p mimic. We demonstrated that Tan IIA could inhibit the expression of AKT3 by up-regulating the expression of miR-497-5p. We subsequently identified that AKT3 was the direct target of miR-497-5p, and that treatment with Tan IIA obviously reversed the effect of treatment with an miR-497-5p inhibitor under harsh conditions. In turn, PCNA expression was increased and cleaved Caspase-3 was suppressed, which contributed to the growth of AML cells. CONCLUSIONS: Our results showed that Tan IIA could inhibit cell proliferation in AML cells through miR-497-5p-mediated AKT3 downregulation pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA