Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ann Palliat Med ; 11(2): 466-479, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34775770

RESUMEN

BACKGROUND: This study aims to explore whether Fufang Shatai Heji (STHJ), as a mixture collected by a decoction of a variety of Chinese herbal medicines for immune system diseases, can improve the cartilage destruction of rheumatoid arthritis (RA). METHODS: The therapeutic effects of STHJ were studied using collagen induced arthritis (CIA) mice. The improvement effect of STHJ on synovitis and cartilage damage caused by arthritis was studied by joint pathological analysis. The inhibitory effect of STHJ on related degradation enzymes in cartilage was studied by immunohistochemistry and real-time polymerase chain reaction (PCR). The specific targets of STHJ were predicted by molecular docking. RESULTS: After successfully inducing CIA, the paws of the mice showed significant swelling, and athological analysis of the ankle and knee joints also showed significant cartilage destruction and synovial hyperplasia. However, synovial hyperplasia and cartilage destruction were markedly alleviated after administration of STHJ. And after STHJ treatment, the expression of ADAMTS-4, ADAMTS-5, MMP-9 and MMP-13, in the cartilage layer of CIA mice was significantly inhibited. Through molecular docking assays, we proved that acteoside in STHJ could directly bind to the Glu111, Phe110 residues in MMP-9 and glycyrrhizic acid in STHJ bind to the Glu382, Asn433 residues in MMP-13. CONCLUSIONS: Our results suggested that STHJ may alleviate synovial hyperplasia and cartilage destruction in CIA mice and protect cartilage by inhibiting the expression of MMP-9 and other enzymes.


Asunto(s)
Artritis Experimental , Medicamentos Herbarios Chinos , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Cartílago/metabolismo , Cartílago/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/farmacología , Metaloproteinasas de la Matriz/uso terapéutico , Ratones , Simulación del Acoplamiento Molecular
2.
Artículo en Inglés | MEDLINE | ID: mdl-32063984

RESUMEN

Fufang Shatai Heji (STHJ) is a mixture of traditional Chinese medicines, such as Radix Adenophorae, Radix Pseudostellariae, and Radix Astragali. STHJ is commonly used to treat diseases caused by low immune function, for example, Sjögren's syndrome (SS). The primary objective of this study was to assess the immunopotentiating effect of STHJ using an immunosuppressive mouse model receiving cyclophosphamide (CTX). Following CTX treatment, STHJ was administered by oral gavage for 30 consecutive days. The percentage of specific lymphocyte subpopulations in the spleen was measured by flow cytometry. Levels of inflammatory factors in serum were detected by enzyme-linked immunosorbent assays (ELISAs). The administration of STHJ significantly elevated thymus and spleen indices, increased B cell and natural killer (NK) cell activities, and decreased CD8+ T, CD8+CD122+ T, NKT, and γδT cell activities in the CTX-treated mice. In addition, STHJ upregulated the expression of interleukin- (IL-) 2, IL-6, and tumor necrosis factor-α (TNF-α) and downregulated IL-10 expression in CTX-treated mice. In conclusion, STHJ effectively remitted CTX-induced immunosuppression by modulating the balance of lymphocyte subsets and cytokines. Our results suggest STHJ treatment could be used as an effective therapeutic approach to improve immune function in patients with low immunity.

3.
Langmuir ; 31(49): 13312-20, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26574777

RESUMEN

The self-assembly of lecithin-bile salt mixtures in solutions has long been an important research topic, not only because they are both biosurfactants closely relevant to physiological functions but also for the potential biomedical applications. In this paper, we report an unusual biological hydrogel formed by mixing bile salts and lecithin at low bile salt/lecithin molar ratios (B0) in water. The gel can be prepared at a total lipid concentration as low as ∼15 wt %, and the solidlike property of the solutions was confirmed by dynamic rheological measurements. We used cryo-TEM and SAXS/SANS techniques to probe the self-assembled structure and clearly evidence that the gel is made up of jammed swollen multilamellar vesicles (liposomes), instead of typical fibrous networks found in conventional gels. A mechanism-based on the strong repulsion between bilayers due to the incorporation of negatively charged bile salts is proposed to explain the swelling of the liposomes. In addition to gel, a series of phases, including viscoelastic, gel-like, and low-viscosity fluids, can be created by increasing B0. Such a variety of phase behaviors are caused by the transformation of bilayers into cylindrical and spheroidal micelles upon the change of the effective molecular geometry with B0.


Asunto(s)
Hidrogeles/química , Liposomas/química , Ácidos y Sales Biliares/química , Portadores de Fármacos/química , Lecitinas/química , Reología , Agua/química
4.
Oncotarget ; 6(31): 31805-19, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26378659

RESUMEN

Activation of IκB kinase ß (IKK-ß) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-ß-NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-ß. However, mutations in IKK-ß have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-ß inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-ß kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-ß C46A transgenic mouse model. We show that a novel IKK-ß inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-ß C46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-ß.


Asunto(s)
Artritis Experimental/inmunología , Cisteína/genética , Quinasa I-kappa B/fisiología , Inflamación/tratamiento farmacológico , Mutación/genética , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/genética , Artritis Experimental/patología , Células Cultivadas , Colágeno Tipo II/toxicidad , Femenino , Flavonoles/farmacología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Hipersensibilidad Tardía/tratamiento farmacológico , Hipersensibilidad Tardía/etiología , Hipersensibilidad Tardía/patología , Técnicas para Inmunoenzimas , Inflamación/etiología , Inflamación/patología , Ratones , Ratones Transgénicos , FN-kappa B , Fosforilación , Ratas , Ratas Wistar , Transducción de Señal , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo
5.
Langmuir ; 30(34): 10221-30, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25121460

RESUMEN

The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.


Asunto(s)
Ácidos y Sales Biliares/química , Lecitinas/química , Micelas , Microscopía por Crioelectrón , Microscopía Electrónica de Rastreo , Dispersión de Radiación , Soluciones , Viscosidad , Agua/química
6.
Acta Pharmacol Sin ; 35(1): 124-34, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24384612

RESUMEN

AIM: To investigate the effects of plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica, on human breast cancer cell growth and the cancer cell-induced osteolysis in the bone microenvironment of mice. METHODS: Human breast cancer cell subline MDA-MB-231SA with the ability to spread and grow in the bone was tested. The cell proliferation was determined using the CCK-8 assay. Apoptosis was detected with Annexin V/PI double-labeled flow cytometry. Red fluorescent protein-labeled MDA-MB-231SArfp cells were injected into the right tibia of female BALB/c-nu/nu mice. Three days after the inoculation, the mice were injected with plumbagin (2, 4, or 6 mg/kg, ip) 5 times per week for 7 weeks. The growth of the tumor cells was monitored using an in vivo imaging system. After the mice were sacrificed, the hind limbs were removed for radiographic and histological analyses. RESULTS: Plumbagin (2.5-20 µmol/L) concentration-dependently inhibited the cell viability and induced apoptosis of MDA-MB-231SA cells in vitro (the IC50 value of inhibition of cell viability was 14.7 µmol/L). Administration of plumbagin to breast cancer bearing mice delayed the tumor growth by 2-3 weeks and reduced the tumor volume by 44%-74%. The in vivo imaging study showed that plumbagin dose-dependently inhibited MDA-MB-231SArfp cell growth in bone microenvironment. Furthermore, X-ray images and micro-CT study demonstrated that plumbagin reduced bone erosion area and prevented a decrease in bone tissue volume. Histological studies showed that plumbagin dose-dependently inhibited the breast cancer cell growth, enhanced the cell apoptosis and reduced the number of TRAcP-positive osteoclasts. CONCLUSION: Plumbagin inhibits the cell growth and induces apoptosis in human breast cancer cells in mice bone microenvironment, leading to significant reduction in osteolytic lesions caused by the tumor cells.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Óseas/prevención & control , Neoplasias de la Mama/prevención & control , Naftoquinonas/uso terapéutico , Osteoclastos/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacología , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Naftoquinonas/farmacología , Osteoclastos/patología , Microambiente Tumoral/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-23781264

RESUMEN

Qingfu Guanjieshu (QFGJS) is an herbal preparation for treating rheumatoid arthritis (RA). Previous studies revealed that QFGJS significantly inhibited experimental arthritis and acute inflammation, accompanied by reduction of proinflammatory cytokines and elevation of anti-inflammatory cytokines. This study aims to identify the targeted proteins and predict the proteomic network associated with the drug action of QFGJS by using 2D gel and MALDI-TOF-MS/MS techniques. Thirty female Wistar rats were evenly grouped as normal and vehicle- and QFGJS-treated CIA rats. The antiarthritic effect of QFGJS was examined with a 19-day treatment course, and the knee synovial tissues of animals from each group were obtained for 2D gel and MALDI-TOF-MS/MS analysis. Results showed that QFGJS significantly ameliorated collagen II-induced arthritis when administrated at 2.8 g/kg body weight for 19 days. 2D gel image analysis revealed 89 differentially expressed proteins in the synovial tissues among the normal and vehicle- and QFGJS-treated CIA rats from over 1000 proteins of which 63 proteins were identified by MALDI-TOF-MS/MS analysis, and 32 proteins were included for classification of functions using Gene Ontology (GO) method. Finally, 14 proteins were analyzed using bioinformatics, and a predicted proteomic network related to the anti-arthritic effect of QFGJS was established, and Pgk1 plays a central role.

8.
Bone Res ; 1(4): 362-70, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26273514

RESUMEN

OBJECTIVE: The aim of this study was to investigate the effects of plumbagin (PL), a naphthoquinone derived from the medicinal plant plumbago zeylanica, on the invasion and migration of human breast cancer cells. METHODS: Human breast cancer MDA-MB-231SArfp cells were treated with different concentrations of plumbagin for 24 h. The effects of plumbagin on the migration and invasion were observed by a transwell method. The expressions of IL-1α, IL-1ß, IL-6, IL-8, TGF-ß, TNFα, MMP-2 and MMP-9 mRNA in MDA-MB-231SArfp cells were detected using Real-Time PCR. MDA-MB-231SArfp cells were treated with plumbagin at different concentrations for 45 minutes. The activation of STAT3 was detected by western blot. Following this analysis, STAT3 in MDA-MB-231SArfp cells was knocked out using specific siRNA. mRNA levels of IL-1α, TGF-ß, MMP-2 and MMP-9 were then detected. Consequently, MDA-MB-231SArfp cells were injected intracardially into BALB/c nude mice to construct a breast cancer bone metastatic model. The mice were injected intraperitoneally with plumbagin. Non-invasive in vivo monitoring, X-ray imaging and histological staining were performed to investigate the effects of plumbagin on the invasion and migration of breast cancer cells in vivo. RESULTS: The in vitro results showed that plumbagin could suppress the migration and invasion of breast cancer cells and down-regulate mRNA expressions of IL-1α, TGF-ß, MMP-2 and MMP-9. Western blotting demonstrated that plumbagin inhibited the activation of STAT3 signaling in MDA-MB-231SArfp cells. The inactivation of STAT3 was found to have an inhibitory effect on the expressions of IL-1α, TGF-ß, MMP-2 and MMP-9. In vivo studies showed that plumbagin inhibited the metastasis of breast cancer cells and decreased osteolytic bone metastases, as well as the secretion of MMP-2 and MMP-9 by tumor cells at metastatic lesions. CONCLUSIONS: Plumbagin can suppress the invasion and migration of breast cancer cells via the inhibition of STAT3 signaling and by downregulation of IL-1α, TGF-ß, MMP-2 and MMP-9.

9.
Am J Chin Med ; 37(2): 309-21, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19507274

RESUMEN

This study was designed to investigate the anti-inflammatory effect of Triterpenoic Acids from Eriobotrya japonica (Thunb.) Lindl. (TAL) on chronic bronchitis (CB) in rats. CB model was established by combination of Bacillus Calmette-Guerin (BCG, 5 mg/kg, injected through the caudal vein) and lipopolysaccharide (LPS, 1 g/L, injected through endotracheal intubation). Rats with CB model were treated with TAL (50, 150 and 450 mg/kg) for 3 weeks. The leukocytes in bronchoalveolar lavage fluid (BALF) were counted after Wright staining, the levels of cytokine tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-8, and IL-10 in the supernatants of lung homogenate were assessed by enzyme-linked immunosorbent assay (ELISA), and the protein expression of nuclear factor kappaB (NF-kappaB) and intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelium were tested by immunohistochemical staining. As compared to the normal and sham groups, the total number of leukocyte, the differential counts of neutrophils and alveolar macrophage (AM) in BALF, the levels of TNF-alpha and IL-8 in the supernatants of lung homogenate, and the expression of NF-kappaB and ICAM-1 on bronchial epithelium in CB rats were significantly increased, while the level of IL-10 was decreased. TAL (50, 150 and 450 mg/kg) attenuated these alterations in model CB rats, which indicates that TAL has anti-inflammatory effect in the rats with CB.


Asunto(s)
Antiinflamatorios/uso terapéutico , Bronquitis/tratamiento farmacológico , Eriobotrya/química , Extractos Vegetales/uso terapéutico , Triterpenos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Bronquitis/metabolismo , Líquido del Lavado Bronquioalveolar , Enfermedad Crónica , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley , Triterpenos/farmacología
10.
Am J Chin Med ; 36(5): 899-912, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19051356

RESUMEN

Litsea coreana Levl., a traditional Chinese medicine, has long been used for its diverse benefits such as detoxification and detumescence. Total flavonoids from Litsea coreana Levl. (TFLC) are the effective fraction of L. coreana. This study was designed to investigate the anti-inflammatory effects and mechanisms of TFLC against Feund's complete adjuvant (FCA)-induced arthritis in rats. Arthritis was evaluated by secondary paw swelling, polyarthritis index, body weight and histopathologic analysis. Con A- or LPS-stimulated splenocyte proliferation and cytokine (IL-1 and IL-2) production were assessed by MTT assay and activated mouse cell proliferation assay, respectively. The results indicate that therapeutic administration of TFLC (50, 100, 200 mg/kg, ig x 12 days) could significantly suppress secondary arthritis in rats with adjuvant-induced arthritis (AA). In vivo, TFLC (50, 100, 200 mg/kg, ig x 12 days) augmented splenocyte proliferation and increased IL-2 production in splenocytes, while reduced IL-1 activity in peritoneal macrophages (PM(Phi)) of AA rats. In vitro, TFLC at concentrations from 0.005 to 50 microg/ml exerted the same immunoregulatory effects on AA rats as those in vivo. In addition, an attractive feature of TFLC lies in its apparent lack of toxicity. These results suggest that TFLC without toxicity has a significant anti-arthritic effect on AA rats which could be associated with its anti-inflammatory and immunomodulatory properties.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Experimental/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Litsea/química , Animales , Artritis Experimental/inmunología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/inmunología , Femenino , Adyuvante de Freund , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Fitoterapia , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA