Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621984

RESUMEN

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Especies Reactivas de Oxígeno , Ratas Sprague-Dawley , Caspasa 3/metabolismo , Transducción de Señal , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , ARN Mensajero , Apoptosis
2.
Artículo en Inglés | MEDLINE | ID: mdl-36225189

RESUMEN

Ventricular arrhythmia is one of the main causes of sudden cardiac death, especially after myocardial ischemia. Previous studies have shown that Chai-Hu-San-Shen capsule (CHSSC) can reduce the incidence of ventricular arrhythmias following myocardial ischemia, however, the mechanisms of it are unclear. In present study, we explored the mechanism of CHSSC ameliorates ventricular arrhythmia following myocardial ischemia via inhibiting the CaMKII/FKBP12.6/RyR2/Ca2+ signaling pathway. In vivo, a myocardial ischemia rat model was established and treated with CHSSC to evaluate the therapeutic effect of CHSSC. In vitro, we established an ischemia model in H9C2 cells and treated with CHSSC, KN-93, or H-89. Then, intracellular Ca2+ content, the expression of RyR2, and the interaction between FKBP12.6 and RyR2 were detected. The results showed that CHSSC could delay the occurrence of ventricular arrhythmias and shorten the duration of ventricular arrhythmias. After myocardial ischemia, the intracellular Ca2+ content was increased, and CHSSC treatment mitigated this increase, down-regulated the levels of p-CaMKII, CaMKII, p-RyR2, and RyR2, and up-regulated the levels of p-RyR2 (Ser2808) and p-RyR2 (Ser2814). Co-immunoprecipitation showed an interaction between FKBP12.6 and RyR2, and CHSSC up-regulated the content of the FKBP12.6-RyR2 complex in ischemic cells. In conclusion, our study showed that CaMKII activation led to hyperphosphorylation of RyR2 (Ser2814) and RyR2 (Ser2808) during cardiomyocyte ischemia, which resulted in dissociation of the FKBP12.6-RyR2 complex, and increased intracellular Ca2+ content, which may contribute to the development of ventricular arrhythmias. CHSSC may reduce the incidence of ventricular arrhythmias following myocardial ischemia through inhibition of the CaMKII/RyR2/FKBP12.6/Ca2+ signaling pathway.

3.
Bioengineered ; 13(1): 280-290, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34967264

RESUMEN

Long noncoding RNAs (lncRNAs) exert essential effects in regulating myocardial ischemia/reperfusion (MI/R)-induced injury. This work intended to explore the functions of lncRNA SOX2-OT and its regulatory mechanism within MI/R-induced injury. In this study, gene expression was determined by RT-qPCR. Western blotting was applied for the detection of protein levels. Pro-inflammatory cytokine concentrations, cardiomyocyte viability, and apoptosis were detected via ELISA, CCK-8 and flow cytometry. In the in vitro model, SOX2-OT and YY1 were both upregulated, while miR-186-5p was downregulated. SOX2-OT knockdown attenuated oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cardiomyocyte dysregulation through relieving inflammation, promoting proliferation, and reducing apoptosis in OGD/R-treated H2C9 cells. SOX2-OT positively regulated YY1 expression via miR-186-5p. Moreover, miR-186-5p inhibition or YY1 upregulation abolished the effects of SOX2-OT blocking on the inflammatory responses, proliferation, and apoptosis of OGD/R-challenged H2C9 cells. In conclusion, our results, for the first time, demonstrated that SOX2-OT inhibition attenuated MI/R injury in vitro via regulating the miR-186-5p/YY1 axis, offering potential therapeutic targets for MI/R injury treatment.


Asunto(s)
MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/citología , ARN Largo no Codificante/genética , Factor de Transcripción YY1/genética , Animales , Línea Celular , Regulación hacia Abajo , Modelos Biológicos , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/química , Ratas , Transducción de Señal , Regulación hacia Arriba , Factor de Transcripción YY1/metabolismo
4.
Front Pharmacol ; 11: 587663, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343355

RESUMEN

Diabetic nephropathy (DN), a leading cause of end-stage renal disease, is associated with high morbidity and mortality rates worldwide and the development of new drugs to treat DN is urgently required. Bu-Shen-Huo-Xue (BSHX) decoction is a traditional Chinese herbal formula, made according to traditional Chinese medicine (TCM) theory, and has been used clinically to treat DN. In the present study, we established a high-fat diet/streptozotocin-induced diabetic mouse model and treated the mice with BSHX decoction to verify its therapeutic effects in vivo. Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was applied to analyze the chemical composition and active compounds of BSHX decoction. Markers of podocyte epithelial-mesenchymal transition and the Rac1/PAK1/p38MAPK signaling pathway were evaluated to investigate the mechanism underlying function of BSHX decoction. BSHX decoction effectively alleviated diabetic symptoms, according to analysis of the renal function indicators, serum creatinine, blood urea nitrogen, serum uric acid, and urinary albumin excretion rate, as well as renal histopathology and ultrastructural pathology of DN mice. We identified 67 compounds, including 20 likely active compounds, in BSHX decoction. The podocyte markers, nephrin and podocin, were down-regulated, while the mesenchymal markers, α-SMA and FSP-1, were up-regulated in DN mouse kidney; however, the changes in these markers were reversed on treatment with BSHX decoction. GTP-Rac1 was markedly overexpressed in DN mice and its levels were significantly decreased in response to BSHX decoction. Similarly, levels of p-PAK1 and p-p38MAPK which indicate Rac1 activation, were reduced on treatment with BSHX decoction. Together, our data demonstrated that BSHX decoction ameliorated renal function and podocyte epithelial-mesenchymal transition via inhibiting Rac1/PAK1/p38MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Further, we generated a quality control standard and numerous potential active compounds from BSHX decoction for DN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA