Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytochem Anal ; 35(2): 409-418, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37872850

RESUMEN

INTRODUCTION: Panax ginseng and Panax quinquefolium are traditional Chinese herb medicines and similar in morphology and some chemical components but differ in drug properties, so they cannot be mixed. However, the processed products of them are often sold in the form of slices, powder, and capsules, which are difficult to identify by traditional morphological methods. Furthermore, an accurate evaluation of P. ginseng, P. quinquefolium and the processed products have not been conducted. OBJECTIVE: This study aimed to establish a catalysed hairpin assembly (CHA) identification method for authenticating products made from P. ginseng and P. quinquefolium based on single nucleotide polymorphism (SNP) differences. METHOD: By analysing the differences of SNP in internal transcribed spacer 2 (ITS2) in P. ginseng and P. quinquefolium to design CHA-specific hairpins. Establish a sensitive and efficient CHA method that can identify P. ginseng and P. quinquefolium, use the sequencing technology to verify the accuracy of this method in identifying Panax products, and compare this method with high-resolution melting (HRM). RESULTS: The reaction conditions of CHA were as follows: the ratio of forward and reverse primers, 20:1; hairpin concentration, 5 ng/µL. Compared with capillary electrophoresis, this method had good specificity and the limit of detection was 0.5 ng/µL. The result of Panax product identification with CHA method were coincidence with that of the sequencing method; the positive rate of CHA reaction was 100%. CONCLUSION: This research presents an effective identification method for authenticating P. ginseng and P. quinquefolium products, which is helpful to improve the quality of Panax products.


Asunto(s)
Panax , Panax/genética , Panax/química , Medicina Tradicional China , Polimorfismo de Nucleótido Simple , Tecnología
2.
Huan Jing Ke Xue ; 44(12): 7014-7023, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098424

RESUMEN

Fertilizer reduction and efficiency improvement is an important basis for ensuring the safety of the agricultural ecological environment. Microorganisms are the key driving force for regulating the soil nitrogen and phosphorus cycle. Studying the nitrogen and phosphorus transformation function of rhizosphere microorganisms can provide a microbiological regulation approach for further improving the use efficiency of soil nitrogen and phosphorus. Based on the field micro-plot experiments of three typical farmland soils(phaeozem, cambisol, and acrisol), metagenomic sequencing technology was used to study the differences in functional genes and regulatory factors of maize rhizosphere microorganisms during soil nitrogen and phosphorus transformation. The results showed that the functional diversity of maize rhizosphere microorganisms was affected by soil type. The functional diversity of rhizosphere microorganisms in phaeozem and cambisol was mainly affected by water content and nutrient content, and that in acrisol was affected by total phosphorus(TP) and available phosphorus(AP). For soil nitrogen transformation, the gene abundance of related enzymes in the pathway of nitrogen transformation was the highest in the urease gene(ureC) and glucose dehydrogenase gene(gdh), which were 7.25×10-5-12.88×10-5 and 4.47×10-5-7.49×10-5, respectively. The total abundance of assimilatory nitrate reduction functional genes in acrisol was higher than that in phaeozem and cambisol, and the total abundance of functional genes related to other processes was the highest in cambisol. The abundance of functional genes encoding enzymes related to nitrogen metabolism was mainly driven by soil bacterial richness, total potassium(TK), and TP. For soil phosphorus transformation, the number of alkaline phosphatase genes(phoD) catalyzing organic phosphorus mineralization was 1093, and the number of acid phosphatase genes(PHO) was 42. The abundance of phoD was two orders of magnitude higher than that of PHO. In addition, fertilization had no significant effect on the abundance of phoD and PHO in the same soil type. Random forest analysis showed that the abundances of phoD and PHO were significantly affected by soil moisture, organic matter(OM), and total nitrogen(TN), but AP content had the greatest impact on PHO abundance. These results clarified the nitrogen and phosphorus transformation characteristics of maize rhizosphere microorganisms at the functional genomic level and enriched the molecular biological mechanism of the microbial nitrogen and phosphorus transformation function.


Asunto(s)
Rizosfera , Zea mays , Zea mays/metabolismo , Fósforo/metabolismo , Nitrógeno/análisis , Suelo , Genómica , Microbiología del Suelo , Fertilizantes/análisis
3.
Anal Biochem ; 679: 115298, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619904

RESUMEN

Panax ginseng and Panax quinquefolium are two valuable Chinese herbal medicines that should not be mixed because they differ in drug properties and efficacy. The traditional identification method is easily affected by subjective factors and cannot effectively distinguish between ginseng products. This study aimed to develop a new chemical analysis method to visually identify P. ginseng and P. quinquefolium. In this method, a large number of sequences containing G-quadruplex were generated by loop-mediated isothermal amplification, and the combination of G-quadruplex and hemin was used to form deoxyribozyme, which catalyzed the color change of H2O2. Artificial simulation of adulteration experiments revealed that this method could detect more than 20% adulterated P. quinquefolium. Compared with the traditional identification methods, this technology was simpler and more efficient, providing a reference for developing rapid visual identification methods and reagents for P. ginseng and P. quinquefolium.


Asunto(s)
ADN Catalítico , Panax , Peróxido de Hidrógeno , Cromatografía de Gases , Simulación por Computador
4.
J Environ Manage ; 325(Pt B): 116556, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283173

RESUMEN

There have been numerous summaries of the runoff purification characteristics of bioretention cells in warm climates. However, little has been done on the effects of freeze-thaw cycles (FTCs) that frequently occur in cold regions on bioretention cell performance. Three experimental columns were constructed to simulate the operation of the bioretention cell under the FTCs. The effects of FTCs on the nutrient removal efficiency of different filling bioretention cells were analyzed. The results showed that the ammonia nitrogen (NH4+-N) concentration in the effluent of the wood chip bioretention cell under the T3 conditions (WBCF) (2.35 mg/L) was significantly higher than that of the wood chip bioretention cell operating at room temperature (WBCR) (0.62 mg/L). The effluent NH4+-N concentration of aluminum sludge bioretention cell (ABCF) (0.096 mg/L) under the FTCs was lower than that of WBCF (0.91 mg/L). Under the T3 condition, the effluent nitrate nitrogen (NO3--N) and total nitrogen (TN) concentrations of WBCF (5.33 mg/L and 8.86 mg/L) were higher than those of WBCR (5 mg/L and 6.11 mg/L) at room temperature. Under FTCs conditions, both WBCF and ABCF had high NO3--N removal efficiency (up to 85.87% and 24.75%) at the initial stage of thawing of the filler, and the efficiency gradually decreased with the thawing of the filler. With the increase of FTCs, the NO3--N removal efficiency of WBCF gradually decreased (always higher than 13.6%), while the removal efficiency of ABCF fluctuated wildly (the removal efficiency was primarily negative). The total phosphorus (TP) concentration in the effluent of WBCF (0.11 mg/L) under the T3 conditions was lower than that of WBCR (0.02 mg/L) at room temperature, and the TP concentration of ABCF (0.021 mg/L) in the effluent under the FTCs was slightly lower than that of WBCF (0.031 mg/L). The FTCs have a more significant impact on removing nitrogen pollutants in runoff, but have little effect on phosphorus. Compared with aluminum sludge, wood chips are more suitable for efficient removal of nitrogen pollutants in runoff under the FTCs. The experimental conclusions can provide a reference for the construction of bioretention cells in cold regions.


Asunto(s)
Contaminantes Ambientales , Lluvia , Aluminio , Aguas del Alcantarillado , Fósforo , Nitrógeno/análisis , Nutrientes
5.
Life Sci ; 266: 118889, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310043

RESUMEN

AIM: The coronavirus disease 2019 (COVID-19) pandemic has swept the globe and no specific effective drug has been identified. Drug repurposing is a well-known method to address the crisis in a time-critical fashion. Antipsychotic drugs (APDs) have been reported to inhibit DNA replication of hepatitis B virus, measles virus germination, and HIV infection, along with replication of SARS-CoV and MERS-CoV, both of which interact with host cells as SARS-CoV-2. METHODS: Nineteen APDs were screened using ACE2-HEK293T cell membrane chromatography (ACE2-HEK293T/CMC). Cytotoxicity assay, coronavirus spike pseudotype virus entry assay, surface plasmon resonance, and virtual molecular docking were applied to detect affinity between ACE2 protein and drugs and a potential antiviral property of the screened compounds. KEY FINDINGS: After the CMC screening, 8 of the 19 APDs were well-retained on ACE2-HEK293T/CMC column and showed significant antiviral activities in vitro. Three quarters of them belong to phenothiazine and could significantly inhibit the entrance of coronavirus into ACE2-HEK293T cells. Aother two drugs, aripiprazole and tiapride, exhibited weaker inhibition. We selected five of the drugs for subsequent evaluation. All five showed similar affinity to ACE2 and virtual molecular docking demonstrated they bound with different amino acids respectively on ACE2 which SARS-CoV-2 binds to. SIGNIFICANCE: Eight APDs were screened for binding with ACE2, five of which demonstrated potential protective effects against SARS-CoV-2 through acting on ACE2. Although the five drugs have a weak ability to block SARS-CoV-2 with a single binding site, they may provide a synergistic effect in adjuvant therapy of COVID-19 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antipsicóticos/farmacología , Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/química , Antipsicóticos/química , Antipsicóticos/metabolismo , Membrana Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida/métodos , Reposicionamiento de Medicamentos , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Resonancia por Plasmón de Superficie , Internalización del Virus/efectos de los fármacos
6.
Phytomedicine ; 79: 153333, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32920291

RESUMEN

BACKGROUND: The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019 and there is no sign that the epidemic is abating . The major issue for controlling the infectious is lacking efficient prevention and therapeutic approaches. Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been reported to treat the disease, but the underlying mechanism remains controversial. PURPOSE: The objective of this study is to investigate whether CQ and HCQ could be ACE2 blockers and used to inhibit 2019-nCoV virus infection. METHODS: In our study, we used CCK-8 staining, flow cytometry and immunofluorescent staining to evaluate the toxicity and autophagy of CQ and HCQ, respectively, on ACE2 high-expressing HEK293T cells (ACE2h cells). We further analyzed the binding character of CQ and HCQ to ACE2 by molecular docking and surface plasmon resonance (SPR) assays, 2019-nCoV spike pseudotyped virus was also used to observe the viropexis effect of CQ and HCQ in ACE2h cells. RESULTS: Results showed that HCQ is slightly more toxic to ACE2h cells than CQ. Both CQ and HCQ could bind to ACE2 with KD = (7.31 ± 0.62)e-7 M and (4.82 ± 0.87)e-7 M, respectively. They exhibit equivalent suppression effect for the entrance of 2019-nCoV spike pseudotyped virus into ACE2h cells. CONCLUSIONS: CQ and HCQ both inhibit the entrance 2019-nCoV into cells by blocking the binding of the virus with ACE2. Our findings provide novel insights into the molecular mechanism of CQ and HCQ treatment effect on virus infection.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Betacoronavirus/efectos de los fármacos , Cloroquina/farmacología , Hidroxicloroquina/farmacología , Peptidil-Dipeptidasa A/efectos de los fármacos , Enzima Convertidora de Angiotensina 2 , Autofagia/efectos de los fármacos , Betacoronavirus/fisiología , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
7.
Protein Expr Purif ; 163: 105445, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31252070

RESUMEN

Chan Su is a traditional medicine prepared from toxic secretions from the auricular and skin glands of Chinese toads. Previous studies show that active components in Chan Su can inhibit the proliferation of tumor cells. To study the effect of Chan Su peptides on angiogenesis, fresh Chan Su was collected and its component peptides were isolated by an extraction and precipitation method. A high-performance liquid chromatography (HPLC) fingerprint of the Chan Su component peptides revealed that there were more than 18 peptide component peaks. We demonstrate that Chan Su peptides inhibit angiogenesis in vitro by inhibiting human umbilical vein endothelial cell (HUVEC) proliferation and tube formation in a dose-dependent manner. Western blots indicated that Chan Su peptides inhibited the protein expression of VEGF165 and Ras, leading us to conclude that Chan Su peptide components exert anti-angiogenic effects by suppressing the VEGF165-VEGFR2-Ras signalling pathway. Finally, we identified the partial amino acid sequences of seven Chan Su peptides using the shotgun proteomics method.


Asunto(s)
Venenos de Anfibios/química , Inhibidores de la Angiogénesis/aislamiento & purificación , Bufanólidos/química , Medicina Tradicional China , Animales , Anuros , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Células Endoteliales de la Vena Umbilical Humana , Humanos , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteínas ras/antagonistas & inhibidores
8.
Oncol Lett ; 14(1): 15-22, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28693129

RESUMEN

Secretion of granular glands from the skin of amphibians is a fascinating resource of active substances, particularly for cancer therapy in clinical practice of Traditional Chinese Medicine. A variety of anti-tumor peptides have been isolated from different toads and frogs; however, no anti-tumor peptides are reported in toad venom of Bufo gargarizans. Firstly, soluble fraction from fresh toad venom (FTV) was compared with that from dried toad venom (DTV), using HPLC analysis. It was revealed that FTV has a different HPLC chromatography compared with DTV. Soluble fraction of FTV is more toxic to SH-SY5Y cells than that of DTV, as evaluated by MTT assay. Secondly, it was identified that protein components from soluble fractions of FTV and DTV possess different patterns by SDS-PAGE analysis, and proteins from FTV are also more toxic than that from DTV. Thirdly, an immobilized basic fibroblast growth factor (bFGF) affinity column was used to isolate bFGF-binding components from soluble fraction of FTV, and it was identified that bFGF-binding components prohibited bFGF-dependent neurite growth of SH-SY5Y cells. Finally, it was identified that bFGF-binding components activated apoptosis via upregulation of caspase-3 and caspase-8 expression in SH-SY5Y cells. These data suggest that FTV contains active components that interact with bFGF and activate apoptosis in SH-SY5Y cells.

9.
Molecules ; 20(2): 2931-48, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25679052

RESUMEN

Stellera chamaejasme L. (Thymelaeaceae) is widely distributed in Mongolia, Tibet and the northern parts of China. Its roots are commonly used as "Langdu", which is embodied in the Pharmacopoeia of the P.R. China (2010) as a toxic Traditional Chinese Medicine. It is claimed to have antivirus, antitumor and antibacterial properties in China and other Asian countries. Studies were carried out to characterize the inhibition of neochamaejasmin B (NCB) on P-glycoprotein (P-gp, ABCB1, MDR1). Rhodamine-123 (R-123) transport and accumulation studies were performed in MDCK-hMDR1 cells. ABCB1 (MDR1) mRNA gene expression and P-gp protein expression were analyzed. Binding selectivity studies based on molecular docking were explored. R-123 transport and accumulation studies in MDCK-hMDR1 cells indicated that NCB inhibited the P-gp-mediated efflux in a concentration-dependent manner. RT-PCR and Western blot demonstrated that the P-gp expression was suppressed by NCB. To investigate the inhibition type of NCB on P-gp, Ki and Ki' values were determined by double-reciprocal plots in R-123 accumulation studies. Since Ki was greater than Ki', the inhibition of NCB on P-gp was likely a mixed type of competitive and non-competitive inhibition. The results were confirmed by molecular docking in our current work. The docking data indicated that NCB had higher affinity to P-gp than to Lig1 ((S)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one).


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Biflavonoides/aislamiento & purificación , Biflavonoides/farmacología , Thymelaeaceae/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Biflavonoides/química , Perros , Células de Riñón Canino Madin Darby , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA