Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 16(1): 234, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641048

RESUMEN

BACKGROUND: Tea polyphenols (TPs) attenuate obesity related liver inflammation; however, the anti-obesity effects and anti-inflammatory mechanisms are not clearly understood. This study aimed to determine whether the anti-obesity and anti-inflammatory TPs mechanisms associated with cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression levels, and obesity-related gene response in dogs. RESULTS: Dogs fed TPs displayed significantly decreased (p < 0.01) mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6) compared to dogs that consumed high-fat diet (HFD) alone. TPs significantly (p < 0.01) inhibited COX-2 and iNOS expression level, and decreased liver fat content and degeneration. CONCLUSION: These results suggested that TPs act as a therapeutic agent for obesity, liver inflammation, and fat degeneration via COX-2 and iNOS inhibition, with TNF-α, IL-1ß, and IL-6 involvement.


Asunto(s)
Camellia sinensis/química , Ciclooxigenasa 2/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Obesidad/veterinaria , Polifenoles/farmacología , Animales , Antiinflamatorios , Enfermedades de los Perros/tratamiento farmacológico , Perros , Inflamación/veterinaria , Obesidad/tratamiento farmacológico
2.
J Nutr Biochem ; 78: 108324, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32004926

RESUMEN

Green tea polyphenols (GTPs) exhibit beneficial effects towards obesity and intestinal inflammation; however, the mechanisms and association with gut microbiota are unclear. We examined the role of the gut microbiota of GTPs treatment for obesity and inflammation. Canines were fed either a normal diet or high-fat diet with low (0.48% g/kg), medium (0.96% g/kg), or high (1.92% g/kg), doses of GTPs for 18 weeks. GTPs decreased the relative abundance of Bacteroidetes and Fusobacteria and increased the relative abundance of Firmicutes as revealed by 16S rRNA gene sequencing analysis. The relative proportion of Acidaminococcus, Anaerobiospirillum, Anaerovibrio, Bacteroides, Blautia, Catenibactetium, Citrobacter, Clostridium, Collinsella, and Escherichia were significantly associated with GTPs-induced weight loss. GTPs significantly (P<.01) decreased expression levels of inflammatory cytokines, including TNF-α, IL-6, and IL-1ß, and inhibited induction of the TLR4 signaling pathway compared with high-fat diet. We show that the therapeutic effects of GTPs correspond with changes in gut microbiota and intestinal inflammation, which may be related to the anti-inflammatory and anti-obesity mechanisms of GTPs.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/microbiología , Obesidad/terapia , Polifenoles/administración & dosificación , Té/química , Animales , Análisis por Conglomerados , Dieta Alta en Grasa , Suplementos Dietéticos , Perros , Firmicutes/clasificación , Fusobacterias/clasificación , Guanosina Trifosfato/metabolismo , Inflamación , Mucosa Intestinal/metabolismo , Intestinos/patología , Masculino , Obesidad/metabolismo , Filogenia , ARN Ribosómico 16S , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Aumento de Peso/efectos de los fármacos
3.
BMC Vet Res ; 15(1): 180, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31146764

RESUMEN

BACKGROUND: Breast cancer resistance protein (BCRP) and multidrug resistance protein 4 (MRP4) are involved in uric acid excretion in humans and mice. Despite evidence suggesting that renal proximal tubular epithelial cells participate in uric acid excretion in chickens, the roles of BCRP and MRP4 therein remain unclear. This study evaluated the relationship between BCRP and MRP4 expression and renal function in chickens. RESULTS: Sixty laying hens were randomly divided into four treatment groups: a control group (NC) fed a basal diet; a sulfonamide-treated group (SD) fed the basal diet and supplemented with sulfamonomethoxine sodium via drinking water (8 mg/L); a fish meal group (FM) fed the basal diet supplemented with 16% fishmeal; and a uric acid injection group (IU) fed the basal diet and intraperitoneally injected with uric acid (250 mg/kg body weight). The results showed that serum uric acid, creatinine, and blood urea nitrogen levels were significantly higher in the SD and IU, but not FM, than in the NC groups. Renal tubular epithelial cells in the SD and IU groups were damaged. Liver BCRP and MRP4 mRNA and protein levels were significantly decreased in the SD and IU groups, but slightly increased in the FM group. In the SD group, BCRP and MRP4 were significantly increased in the ileum and slightly increased in the kidney. In the FM group, BCRP and MRP4 were significantly increased in the kidney and slightly increased in the ileum. In the IU group, BCRP and MRP4 were significantly increased in the kidney and ileum. BCRP and MRP4 expression in the jejunum was not affected by the treatments. CONCLUSION: Together, these results demonstrate that BCRP and MRP4 are involved in renal and intestinal uric acid excretion in chickens and that BCRP is positively related to MRP4 expression. Further, impairment of renal function results in an increase in serum uric acid as well as a compensatory increase in BCRP and MRP4 in the ileum; however, under normal renal function, renal BCRP and MRP4 are the main regulators of uric acid excretion.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Pollos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Ácido Úrico/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Nitrógeno de la Urea Sanguínea , Pollos/sangre , Células Epiteliales/ultraestructura , Femenino , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Riñón/ultraestructura , Túbulos Renales/ultraestructura , Hígado/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , ARN Mensajero/metabolismo , Ácido Úrico/sangre
4.
Inflammopharmacology ; 27(1): 77-88, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30099676

RESUMEN

Rutin, found widely in traditional Chinese medicine materials, is used to treat eye swelling and pain, hypertension, and hyperlipidemia. In the present study, a mouse mastitis model induced by lipopolysaccharide (LPS) was established to explore rutin's inhibitory mechanism on mastitis via nuclear factor kappa B (NF-κB) inflammatory signaling and the relationship between NF-κB signaling and endoplasmic reticulum (ER) stress. Mice were divided into six groups: Control group, LPS model group, LPS + rutin (25, 50, and 100 mg/kg) and LPS + dexamethasone (DEX) group. DEX, rutin, and PBS (control and LPS groups) were administered 1 h before and 12 h after perfusion of LPS. After LPS stimulation for 24 h, to evaluate rutin's therapeutic effect on mastitis, the mammary tissues of each group were collected to detect histopathological injury, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 mRNA and protein levels; and glucose-regulated protein, 78 kDa (GRP78) protein levels. The protein and mRNA levels of TNF-α, IL-1ß, and IL-6 in the LPS + rutin group were significantly lower than those in the LPS model group. Similarly, p50/p105, phosphorylated (p)-p65/p65 and p-inhibitor of nuclear factor kappa b kinase subunit beta (p-IKKß)/IKKß ratios in the LPS + rutin group (50 mg/kg) and LPS + rutin group (100 mg/kg) decreased significantly. GRP78 protein expression was significantly higher in LPS + rutin group (100 mg/kg). The structure of mammary tissue became gradually more intact and vacuolization of acini decreased as the rutin concentration increased. The nuclear quantity of p65 in the LPS + rutin group decreased significantly in a rutin dose-dependent manner. Rutin had an anti-inflammatory effect in the LPS-induced mouse mastitis model, manifested by inhibition of NF-κB pathway activation and attenuation of ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Lipopolisacáridos/farmacología , Mastitis/inducido químicamente , Mastitis/tratamiento farmacológico , FN-kappa B/metabolismo , Sustancias Protectoras/farmacología , Rutina/farmacología , Animales , Antiinflamatorios/farmacología , Chaperón BiP del Retículo Endoplásmico , Femenino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Mastitis/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-29849710

RESUMEN

Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5-7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1ß, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1ß, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

6.
Nutrients ; 10(7)2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29954124

RESUMEN

Sperm cells are highly sensitive to reactive oxygen species (ROS), which are produced during cellular oxidation. In normal cell biology, ROS levels increase with a decreasing antioxidant response, resulting in oxidative stress which threatens sperm biology. Oxidative stress has numerous effects, including increased apoptosis, reduced motion parameters, and reduced sperm integrity. In this regard, green tea polyphenols (GrTPs) have been reported to possess properties that may increase the quality of male and female gametes, mostly via the capability of catechins to reduce ROS production. GrTPs have antioxidant properties that improve major semen parameters, such as sperm concentration, motility, morphology, DNA damage, fertility rate, and gamete quality. These unique properties of green tea catechins could improve reproductive health and represent an important study area. This exploratory review discusses the therapeutic effects of GrTPs against infertility, their possible mechanisms of action, and recommended supportive therapy for improving fertility in humans and in animals.


Asunto(s)
Antioxidantes/uso terapéutico , Fármacos para la Fertilidad Femenina/uso terapéutico , Fármacos para la Fertilidad Masculina/uso terapéutico , Fertilidad/efectos de los fármacos , Infertilidad Femenina/tratamiento farmacológico , Infertilidad Masculina/tratamiento farmacológico , Polifenoles/uso terapéutico , Salud Reproductiva , , Animales , Antioxidantes/aislamiento & purificación , Femenino , Humanos , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Infertilidad Femenina/fisiopatología , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Masculino , Óvulo/efectos de los fármacos , Óvulo/metabolismo , Óvulo/patología , Estrés Oxidativo/efectos de los fármacos , Polifenoles/aislamiento & purificación , Embarazo , Factores de Riesgo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Espermatozoides/patología , Té/química
7.
Toxicon ; 150: 60-65, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29778593

RESUMEN

During current research, the effects of deoxynivalenol (DON) exposure on cerebral lipid peroxidation, neurotransmitter secretion and calcium homeostasis in chicks were evaluated. One hundred and twenty Hailan chicks (male, 1-day-old) were randomly divided into four groups. Chicks in low, medium and high dose groups were fed with 0.27, 1.68 and 12.21 mg/kg-1 DON respectively by gavage according to feed intake. Chicks in control group were fed with physiological saline by gavage. The trials were conducted for 36 d. At the end of the trials, twenty chicks per group were sacrificed, and the cerebra were collected for measuring the brain indices. Compared with the control group, the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase were significantly decreased in treatment groups (P < 0.05), the contents of malondialdehyde in high dose group were increased (P < 0.05), the catalase activities and nitric oxide contents in medium and high dose groups were decreased (P < 0.05), and the activities of T-AOC in high dose group were reduced (P < 0.05). Compared with the control group, the concentrations of norepinephrine and 5-hydroxytryptamine in high dose group were obviously increased (P < 0.05), while the concentrations of dopamine were decreased (P < 0.05). Meanwhile, the concentrations of calcium and calmodulin (CaM) in medium and high dose groups were lower than those of the control group (P < 0.05), and the gene relative expression of CaM mRNA in treatment groups were significantly reduced (P < 0.05), in a dose-dependent manner. These results suggested that DON exposure can affect the cerebral lipid peroxidation, neurotransmitters secretion and the balance of calcium homeostasis in chicks.


Asunto(s)
Encéfalo/efectos de los fármacos , Calcio/metabolismo , Pollos , Peroxidación de Lípido/efectos de los fármacos , Neurotransmisores/metabolismo , Tricotecenos/toxicidad , Animales , Antioxidantes , Encéfalo/metabolismo , Calmodulina/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Masculino , Oxidación-Reducción , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Inflammopharmacology ; 26(2): 319-330, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29532213

RESUMEN

Inflammatory bowel disease (IBD) is a collection of inflammatory conditions of colon and small intestine which affect millions of individuals worldwide and the prevalence amount is on the rise. The organ failure as well as loss of tissue function is because of the inflammatory reaction which is the major contributor of tissue healing leading to lifelong debilitation. To stop the tough consequences of inflammation every patient pursues alternative therapy to relieve symptoms. Green tea polyphenols (GTPs) play significant roles in down regulating signaling pathways because GTPs exert effective antioxidant properties and regulate Toll-like receptor 4 (TLR4) expression via certain receptor, inhibited endotoxin-mediated tumor necrosis factor alpha (TNF-α) production by blocking transcription nuclear factor-kappa B (NF-kB) activation and upstream of mediated I kappa B kinase complex pathway activities, as well as intrusion with the flow of cytokines and synthesis of cyclooxygenase-2 (COX-2). This article highlights the green approach regarding the defensive effects of GTP review-related studies concerning the contrary effects and the key therapeutic targets application of GTPs in biomedical field to treat inflammatory bowel disease (IBD) and its complications. .


Asunto(s)
Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Polifenoles/farmacología , Té/química , Animales , Antioxidantes/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-28676833

RESUMEN

Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1ß in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA