Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Physiol Biochem ; 207: 108341, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266557

RESUMEN

Low temperature is one of the most important environmental factors limiting tea plants' geographic distribution and severely affects spring tea's yield and quality. Circadian components contribute to plant responses to low temperatures; however, comparatively little is known about these components in tea plants. In this study, we identified a core clock component the LATE ELONGATED HYPOCOTYL, CsLHY, which is mainly expressed in tea plants' mature leaves, flowers, and roots. Notably, CsLHY maintained its circadian rhythmicity of expression in summer, but was disrupted in winter and held a high expression level. Meanwhile, we found that CsLHY expression rhythm was not affected by different photoperiods but was quickly broken by cold, and the low temperature induced and kept CsLHY expression at a relatively high level. Yeast one-hybrid and dual-luciferase assays confirmed that CsLHY can bind to the promoter of Sugars Will Eventually be Exported Transporters 17 (CsSWEET17) and function as a transcriptional activator. Furthermore, suppression of CsLHY expression in tea leaves not only reduced CsSWEET17 expression but also impaired the freezing tolerance of leaves compared to the control. Our results demonstrate that CsLHY plays a positive role in the low-temperature response of tea plants by regulating CsSWEET17 when considered together.


Asunto(s)
Camellia sinensis , Frío , Factores de Transcripción/metabolismo , Camellia sinensis/metabolismo , Ritmo Circadiano , , Regulación de la Expresión Génica de las Plantas
2.
Food Chem ; 441: 138341, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38176147

RESUMEN

The key components dominating the quality of green tea and black tea are still unclear. Here, we respectively produced green and black teas in March and June, and investigated the correlations between sensory quality and chemical compositions of dry teas by multivariate statistics, bioinformatics and artificial intelligence algorithm. The key chemical indices were screened out to establish tea sensory quality-prediction models based on the result of OPLS-DA and random forest, namely 4 flavonol glycosides of green tea and 8 indices of black tea (4 pigments, epigallocatechin, kaempferol-3-O-rhamnosyl-glucoside, ratios of caffeine/total catechins and epi/non-epi catechins). Compared with OPLS-DA and random forest, the support vector machine model had good sensory quality-prediction performance for both green tea and black tea (F1-score > 0.92), even based on the indices of fresh tea leaves. Our study explores the potential of artificial intelligence algorithm in classification and prediction of tea products with different sensory quality.


Asunto(s)
Camellia sinensis , Catequina , Té/química , Inteligencia Artificial , Cafeína/análisis , Camellia sinensis/química , Catequina/análisis , Algoritmos
3.
Plant J ; 117(5): 1356-1376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059663

RESUMEN

Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .


Asunto(s)
Camellia sinensis , Colletotrichum , Ciclopentanos , Oxilipinas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Resistencia a la Enfermedad/genética , Colletotrichum/fisiología , Té/metabolismo , Transducción de Señal
4.
Physiol Plant ; 175(6): e14064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148243

RESUMEN

Green tea made from albino buds and leaves has a strong umami taste and aroma. The cultivar 'Zhonghuang 2' (ZH2, Camellia sinensis) is a natural mutant with young shoots that are yellow in spring and green or yellow-green in summer. However, the mechanism of leaf color change remains unclear. Here, we found that young shoots of ZH2 were yellow at low temperature (LT) and green at high temperature (HT), indicating that ZH2 is a temperature-sensitive cultivar. Transmission electron microscopy analysis showed that the grana in the chloroplasts of young shoots grown at LT were poorly stacked, which caused a lack of photoreactions and chlorophyll. RNA-seq results showed 1279 genes differentially expressed in the young shoots grown at LT compared with those at HT, including genes related to cytochrome synthesis, chloroplast development, photosynthesis, and DNA methylation. A whole-genome bisulfite sequencing assay revealed that the dynamics of DNA methylation levels in the CG, CHG, and CHH contexts decreased under LT, and the change was most obvious in the CHH context. Furthermore, 72 genes showed significant changes in both expression and DNA methylation levels, and most of them were related to cytochrome synthesis, chloroplast development, photosynthesis, transcription factors, and signaling pathways. These results demonstrate that DNA methylation is involved in the LT-regulated albino processes of ZH2. Changes in DNA methylation levels were associated with changes in gene expression levels, affecting the structure and function of chloroplasts, which may have a phenotypic impact on shoot and leaf color.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Transcriptoma/genética , Temperatura , Clorofila/metabolismo , Citocromos/análisis , Citocromos/genética , Citocromos/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373207

RESUMEN

Cold stress is a major environmental factor that adversely affects the growth and productivity of tea plants. Upon cold stress, tea plants accumulate multiple metabolites, including ascorbic acid. However, the role of ascorbic acid in the cold stress response of tea plants is not well understood. Here, we report that exogenous ascorbic acid treatment improves the cold tolerance of tea plants. We show that ascorbic acid treatment reduces lipid peroxidation and increases the Fv/Fm of tea plants under cold stress. Transcriptome analysis indicates that ascorbic acid treatment down-regulates the expression of ascorbic acid biosynthesis genes and ROS-scavenging-related genes, while modulating the expression of cell wall remodeling-related genes. Our findings suggest that ascorbic acid treatment negatively regulates the ROS-scavenging system to maintain ROS homeostasis in the cold stress response of tea plants and that ascorbic acid's protective role in minimizing the harmful effects of cold stress on tea plants may occur through cell wall remodeling. Ascorbic acid can be used as a potential agent to increase the cold tolerance of tea plants with no pesticide residual concerns in tea.


Asunto(s)
Ácido Ascórbico , Camellia sinensis , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Camellia sinensis/metabolismo , Perfilación de la Expresión Génica , Té/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Frío
6.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047263

RESUMEN

Photosystem II repair in chloroplasts is a critical process involved in maintaining a plant's photosynthetic activity under cold stress. FtsH (filamentation temperature-sensitive H) is an essential metalloprotease that is required for chloroplast photosystem II repair. However, the role of FtsH in tea plants and its regulatory mechanism under cold stress remains elusive. In this study, we cloned a FtsH homolog gene in tea plants, named CsFtsH5, and found that CsFtsH5 was located in the chloroplast and cytomembrane. RT-qPCR showed that the expression of CsFtsH5 was increased with leaf maturity and was significantly induced by light and cold stress. Transient knockdown CsFtsH5 expression in tea leaves using antisense oligonucleotides resulted in hypersensitivity to cold stress, along with higher relative electrolyte leakage and lower Fv/Fm values. To investigate the molecular mechanism underlying CsFtsH5 involvement in the cold stress, we focused on the calcineurin B-like-interacting protein kinase 11 (CsCIPK11), which had a tissue expression pattern similar to that of CsFtsH5 and was also upregulated by light and cold stress. Yeast two-hybrid and dual luciferase (Luc) complementation assays revealed that CsFtsH5 interacted with CsCIPK11. Furthermore, the Dual-Luc assay showed that CsCIPK11-CsFtsH5 interaction might enhance CsFtsH5 stability. Altogether, our study demonstrates that CsFtsH5 is associated with CsCIPK11 and plays a positive role in maintaining the photosynthetic activity of tea plants in response to low temperatures.


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Calcineurina/metabolismo , Frío , Camellia sinensis/genética , , Metaloproteasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
mSphere ; 8(1): e0067722, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36692304

RESUMEN

Colletotrichum camelliae is the dominant species causing foliar diseases of tea plants (Camellia sinensis) in China. Transcriptome data and reverse transcription-quantitative PCR (qRT-PCR) analysis have demonstrated that the pectate lyase genes in C. camelliae (CcPELs) were significantly upregulated during infectious development on tea plants (cv. Longjing43). To further evaluate the biological functions of CcPELs, we established a polyethylene glycol (PEG)-mediated protoplast transformation system of C. camelliae and generated targeted deletion mutants of seven CcPELs. Phenotypic assays showed that the genes contribute to mycelial growth, conidiation, and appressorium development. The polypeptides encoded by each CcPEL gene contained a predicted N-terminal signal peptide, and a yeast invertase secretion assay suggested that each CcPEL protein could be secreted. Cell death-suppressive activity assays confirmed that all seven CcPELs did not suppress Bax-induced cell death in tobacco leaf cells. However, deletion of CcPEL16 significantly reduced necrotic lesions on tea leaves. Taken together, these results indicated that CcPELs play essential roles in regulating morphological development, and CcPEL16 is required for full virulence in C. camelliae. IMPORTANCE In this study, we first established a PEG-mediated protoplast transformation system of C. camelliae and used it to investigate the biological functions of seven pectate lyase genes (CcPELs) which were abundantly expressed during infection. The results provided insights into the contributions of pectate lyase to mycelial growth, conidial production, appressorium formation, and the pathogenicity of C. camelliae. We also confirmed the secretory function of CcPEL proteins and their role in suppressing Bax-induced cell death. Overall, this study provides an effective method for generating gene-deletion transformants in C. camelliae and broadens our understanding of pectate lyase in regulating morphological development and pathogenicity.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Virulencia , Proteína X Asociada a bcl-2 ,
8.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555355

RESUMEN

Flowering and bud dormancy are crucial stages in the life cycle of perennial angiosperms in temperate climates. MADS-box family genes are involved in many plant growth and development processes. Here, we identified three MADS-box genes in tea plant belonging to the FLOWERING LOCUS C (CsFLC) family. We monitored CsFLC1 transcription throughout the year and found that CsFLC1 was expressed at a higher level during the winter bud dormancy and flowering phases. To clarify the function of CsFLC1, we developed transgenic Arabidopsis thaliana plants heterologously expressing 35S::CsFLC1. These lines bolted and bloomed earlier than the WT (Col-0), and the seed germination rate was inversely proportional to the increased CsFLC1 expression level. The RNA-seq of 35S::CsFLC1 transgenic Arabidopsis showed that many genes responding to ageing, flower development and leaf senescence were affected, and phytohormone-related pathways were especially enriched. According to the results of hormone content detection and RNA transcript level analysis, CsFLC1 controls flowering time possibly by regulating SOC1, AGL42, SEP3 and AP3 and hormone signaling, accumulation and metabolism. This is the first time a study has identified FLC-like genes and characterized CsFLC1 in tea plant. Our results suggest that CsFLC1 might play dual roles in flowering and winter bud dormancy and provide new insight into the molecular mechanisms of FLC in tea plants as well as other plant species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Camellia sinensis , Arabidopsis/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Té/metabolismo , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
9.
Int J Biol Macromol ; 205: 749-760, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35331791

RESUMEN

Glutathione S-transferases (GSTs) are ubiquitous enzymes involved in the regulation of plant growth, development, and stress responses. Unfortunately, the comprehensive identification of GSTs in tea plant has not been achieved. In this study, a total of 88 CsGSTs proteins were identified and divided into eight classes, among which the tau class was the largest. Chromosomal localization analysis revealed an uneven distribution of CsGSTs across the tea plant genome. Tandem duplication is the main force driving tea plant CsGSTs expansion. CsGSTs structures and conserved motifs were similar. The analysis of cis-regulatory elements in promoter regions showed that CsGSTs can response to multiple stresses, and that MYB may be involved in the transcriptional regulation of CsGST. RNA-Seq data revealed that the expression of most GSTUs was associated with various stresses, including pathogen and insect attack, cold spells, drought and salt stresses, nitrogen nutrition, bud dormancy, and morphological development, and the expression of these CsGSTs was obviously different in eight tissues. In addition, we proved that CsGSTU19, localized at the nucleus and cell membrane, was involved in tea plant defense against temperature stresses and Co. camelliae infection. These findings provide references for the further functional analysis of GSTs in the future.


Asunto(s)
Camellia sinensis , Glutatión Transferasa , Proteínas de Plantas , Estrés Fisiológico , Camellia sinensis/genética , Camellia sinensis/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa/genética , Filogenia , Proteínas de Plantas/genética
11.
BMC Genomics ; 22(1): 121, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596831

RESUMEN

BACKGROUND: Autophagy, meaning 'self-eating', is required for the degradation and recycling of cytoplasmic constituents under stressful and non-stressful conditions, which helps to maintain cellular homeostasis and delay aging and longevity in eukaryotes. To date, the functions of autophagy have been heavily studied in yeast, mammals and model plants, but few studies have focused on economically important crops, especially tea plants (Camellia sinensis). The roles played by autophagy in coping with various environmental stimuli have not been fully elucidated to date. Therefore, investigating the functions of autophagy-related genes in tea plants may help to elucidate the mechanism governing autophagy in response to stresses in woody plants. RESULTS: In this study, we identified 35 C. sinensis autophagy-related genes (CsARGs). Each CsARG is highly conserved with its homologues from other plant species, except for CsATG14. Tissue-specific expression analysis demonstrated that the abundances of CsARGs varied across different tissues, but CsATG8c/i showed a degree of tissue specificity. Under hormone and abiotic stress conditions, most CsARGs were upregulated at different time points during the treatment. In addition, the expression levels of 10 CsARGs were higher in the cold-resistant cultivar 'Longjing43' than in the cold-susceptible cultivar 'Damianbai' during the CA period; however, the expression of CsATG101 showed the opposite tendency. CONCLUSIONS: We performed a comprehensive bioinformatic and physiological analysis of CsARGs in tea plants, and these results may help to establish a foundation for further research investigating the molecular mechanisms governing autophagy in tea plant growth, development and response to stress. Meanwhile, some CsARGs could serve as putative molecular markers for the breeding of cold-resistant tea plants in future research.


Asunto(s)
Camellia sinensis , Autofagia/genética , Camellia sinensis/genética , Camellia sinensis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética ,
12.
Nat Commun ; 11(1): 4447, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895382

RESUMEN

Tea is an economically important plant characterized by a large genome, high heterozygosity, and high species diversity. In this study, we assemble a 3.26-Gb high-quality chromosome-scale genome for the 'Longjing 43' cultivar of Camellia sinensis var. sinensis. Genomic resequencing of 139 tea accessions from around the world is used to investigate the evolution and phylogenetic relationships of tea accessions. We find that hybridization has increased the heterozygosity and wide-ranging gene flow among tea populations with the spread of tea cultivation. Population genetic and transcriptomic analyses reveal that during domestication, selection for disease resistance and flavor in C. sinensis var. sinensis populations has been stronger than that in C. sinensis var. assamica populations. This study provides resources for marker-assisted breeding of tea and sets the foundation for further research on tea genetics and evolution.


Asunto(s)
Camellia sinensis/genética , Resistencia a la Enfermedad/genética , Evolución Molecular , Genoma de Planta/genética , Fitomejoramiento , Domesticación , Perfilación de la Expresión Génica , Genómica , Filogenia , Polimorfismo de Nucleótido Simple
13.
J Agric Food Chem ; 68(39): 10842-10851, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32866009

RESUMEN

l-Theanine has a significant role in the taste of tea (Camellia sinensis) infusions. Our previous research indicated that the lower l-theanine metabolism in ethylamine and l-glutamate is a key factor that explains the higher content of l-theanine in albino tea with yellow or white leaves, compared with that of normal tea with green leaves. However, the specific genes encoding l-theanine hydrolase in tea remains unknown. In this study, CsPDX2.1 was cloned together with the homologous Arabidopsis PDX2 gene and the recombinant protein was shown to catalyze l-theanine hydrolysis into ethylamine and l-glutamate in vitro. There were higher CsPDX2.1 transcript levels in leaf tissue and lower transcripts in the types of albino (yellow leaf) teas compared with green controls. The subcellular location of ethylamine in tea leaves was shown to be in the mitochondria and peroxisome using a nonaqueous fractionation method. This study identified the l-theanine hydrolase gene and subcellular distribution of ethylamine in tea leaves, which improves our understanding of the l-theanine metabolism and the mechanism of differential accumulation of l-theanine among tea varieties.


Asunto(s)
Camellia sinensis/metabolismo , Etilaminas/metabolismo , Glutamatos/metabolismo , Hidrolasas/metabolismo , Hojas de la Planta/enzimología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Camellia sinensis/química , Camellia sinensis/enzimología , Camellia sinensis/genética , Ácido Glutámico/metabolismo , Hidrolasas/química , Hidrolasas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte de Proteínas , Alineación de Secuencia
14.
Sci Rep ; 10(1): 12858, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32733080

RESUMEN

Colletotrichum infects diverse hosts, including tea plants, and can lead to crop failure. Numerous studies have reported that biological processes are involved in the resistance of tea plants to Colletotrichum spp. However, the molecular and biochemical responses in the host during this interaction are unclear. Cuttings of the tea cultivar Longjing 43 (LJ43) were inoculated with a conidial suspension of Colletotrichum camelliae, and water-sprayed cuttings were used as controls. In total, 10,592 differentially expressed genes (DEGs) were identified from the transcriptomic data of the tea plants and were significantly enriched in callose deposition and the biosynthesis of various phytohormones. Subsequently, 3,555 mass spectra peaks were obtained by LC-MS detection in the negative ion mode, and 27, 18 and 81 differentially expressed metabolites (DEMs) were identified in the tea leaves at 12 hpi, 24 hpi and 72 hpi, respectively. The metabolomic analysis also revealed that the levels of the precursors and intermediate products of jasmonic acid (JA) and indole-3-acetate (IAA) biosynthesis were significantly increased during the interaction, especially when the symptoms became apparent. In conclusion, we suggest that callose deposition and various phytohormone signaling systems play important roles in the tea plant-C. camelliae interaction.


Asunto(s)
Colletotrichum/genética , Colletotrichum/fisiología , Glucanos/metabolismo , Interacciones Microbiota-Huesped/fisiología , Metaboloma , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Transducción de Señal/fisiología , Té/microbiología , Transcriptoma , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo
15.
Plant Cell Physiol ; 61(9): 1669-1682, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32645157

RESUMEN

Sugars Will Eventually be Exported Transporters (SWEETs) are important in plant biological processes. Expression levels of CsSWEET1a and CsSWEET17 are induced by cold acclimation (CA) and cold stress in Camellia sinensis. Here, we found that CsSWEET17 was alternatively spliced, and its exclusion (Ex) transcript was associated with the CA process. Both plasma membrane-localized CsSWEET1a and CsSWEET17 transport hexoses, but cytoplasm-localized CsSWEET17-Ex does not. These results indicate that alternative splicing may be involved in regulating the function of SWEET transporters in response to low temperature in plants. The extra C-terminal of CsSWEET17, which is not found in the tonoplast fructose transporter AtSWEET17, did not affect its plasma membrane localization but promoted its sugar transport activities. The overexpression (OE) of CsSWEET1a and CsSWEET17 genes resulted in an increased sugar uptake in Arabidopsis, affecting plant germination and growth. The leaf and seed sizes of the CsSWEET17-OE lines were significantly larger than those of the wild type. Moreover, the OE of CsSWEET1a and CsSWEET17 significantly reduced the relative electrolyte leakage levels under freezing stress. Compared with the wild type, the expression of AtCWINV genes was suppressed in both CsSWEET1a-OE and CsSWEET17-OE lines, indicating the alteration in sugar contents in the cell walls of the OE lines. Furthermore, the interaction between CsSWEET1a and CsSWEET17 was confirmed using yeast two-hybrid and bimolecular fluorescence complementation assays. We showed that CsSWEET1a and CsSWEET17 form homo-/heterodimers in the plasma membrane and mediate the partitioning of sugars between the cytoplasm and the apoplast, thereby regulating plant growth and freezing tolerance.


Asunto(s)
Camellia sinensis/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Monosacáridos/fisiología , Proteínas de Plantas/fisiología , Empalme Alternativo , Arabidopsis , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/fisiología , Respuesta al Choque por Frío , Congelación , Germinación , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , beta-Fructofuranosidasa/metabolismo
16.
Plant Physiol Biochem ; 154: 195-203, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32563043

RESUMEN

Calcineurin B-like (CBL) proteins, a class of Ca2+-binding proteins, play vital roles in calcium signal transduction by interacting specifically with CBL-interacting protein kinases (CIPKs), and these two gene families and their interacting complexes are involved in regulating plant responses to various environmental stimuli. In the present study, eight CBL and 25 CIPK genes were identified in tea plant and divided into four and five subfamilies, respectively. Analysis of the expression of these genes in response to abiotic stresses (mature leaves treated with cold, salinity, and PEG and young shoots treated with cold) revealed that CsCBL1/3/5 and CsCIPK1/4/5/6a/7/8/10b/10c/12/14a/19/23a/24 could be induced by at least two stresses. Under cold stress, CsCBL9 and CsCIPK4/6a/6b/7/11/14b/19/20 were upregulated in both mature leaves and young shoots, CsCBL1/3/5 and CsCIPK1/8/10a/10b/10c/12/14a/23a/24 were induced only in mature leaves, and CsCIPK5/25 were induced only in young shoots. Yeast two-hybrid analysis showed that CsCBL1 could interact with CsCIPK1/10b/12 but not with CsCIPK6a/7/11/14b/20. CsCBL9 was found to interact with CsCIPK1/10b/12/14b but not with CsCIPK6a/7/11/20. These results suggest divergent responses to cold stress regulated by CBL-CIPK complexes between tea plant and Arabidopsis, as well as between mature leaves and young shoots in tea plant. A model of Ca2+-CsCBL-CsCIPK module-mediated abiotic stress signaling in tea plant is proposed.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Frío , Proteínas Quinasas/fisiología , Transducción de Señal , Estrés Fisiológico , Té/fisiología , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/fisiología
17.
Biomolecules ; 10(5)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443615

RESUMEN

Colletotrichum camelliae is one of the most serious pathogens causing anthracnose in tea plants, but the interactive relationship between C. camelliae and tea plants has not been fully elucidated. This study investigated the gene expression changes in five different growth stages of C. camelliae based on transcriptome analysis to explain the lifestyle characteristics during the infection. On the basis of gene ontology (GO) enrichment analyses of differentially expressed genes (DEGs) in comparisons of germ tube (GT)/conidium (Con), appressoria (App)/Con, and cellophane infectious hyphae (CIH)/Con groups, the cellular process in the biological process category and intracellular, intracellular part, cell, and cell part in the cellular component category were significantly enriched. Hydrolase activity, catalytic activity, and molecular_function in the molecular function category were particularly enriched in the infection leaves (IL)/Con group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs were enriched in the genetic information processing pathway (ribosome) at the GT stage and the metabolism pathway (metabolic pathways and biosynthesis of secondary metabolism) in the rest of the stages. Interestingly, the genes associated with melanin biosynthesis and carbohydrate-active enzymes (CAZys), which are vital for penetration and cell wall degradation, were significantly upregulated at the App, CIH and IL stages. Subcellular localization results further showed that the selected non-annotated secreted proteins based on transcriptome data were majorly located in the cytoplasm and nucleus, predicted as new candidate effectors. The results of this study may establish a foundation and provide innovative ideas for subsequent research on C. camelliae.


Asunto(s)
Colletotrichum/genética , Transcriptoma , Camellia sinensis/microbiología , Colletotrichum/patogenicidad , Colletotrichum/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Hifa/metabolismo , Hifa/fisiología , Esporas Fúngicas/metabolismo , Esporas Fúngicas/fisiología
18.
Plant Cell Rep ; 39(4): 553-565, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32060604

RESUMEN

KEY MESSAGE: Overexpression of the tea plant gene CsbZIP18 in Arabidopsis impaired freezing tolerance, and CsbZIP18 is a negative regulator of ABA signaling and cold stress. Basic region/leucine zipper (bZIP) transcription factors play important roles in the abscisic acid (ABA) signaling pathway and abiotic stress response in plants. However, few bZIP transcription factors have been functionally characterized in tea plants (Camellia sinensis). In this study, a bZIP transcription factor, CsbZIP18, was found to be strongly induced by natural cold acclimation, and the expression level of CsbZIP18 was lower in cold-resistant cultivars than in cold-susceptible cultivars. Compared with wild-type (WT) plants, Arabidopsis plants constitutively overexpressing CsbZIP18 exhibited decreased sensitivity to ABA, increased levels of relative electrolyte leakage (REL) and reduced values of maximal quantum efficiency of photosystem II (Fv/Fm) under freezing conditions. The expression of ABA homeostasis- and signal transduction-related genes and abiotic stress-inducible genes, such as RD22, RD26 and RAB18, was suppressed in overexpression lines under freezing conditions. However, there was no significant change in the expression of genes involved in the C-repeat binding factor (CBF)-mediated ABA-independent pathway between WT and CsbZIP18 overexpression plants. These results indicate that CsbZIP18 is a negative regulator of freezing tolerance via an ABA-dependent pathway.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Camellia sinensis/genética , Respuesta al Choque por Frío , Congelación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Aclimatación/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Camellia sinensis/metabolismo , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica de las Plantas/genética , Complejo de Proteína del Fotosistema II/metabolismo , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteostasis/efectos de los fármacos , Proteostasis/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
19.
Genomics ; 112(3): 2318-2326, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31923617

RESUMEN

The tea leaf is economically important, while reproductive growth reduce tea output. However, little is known about flowering mechanisms in tea plants. Here, we determined the approximate times of floral induction, floral transition and floral organ differentiation by morphological observation. We identified 401 and 356 flowering-related genes from the genomes of Camellia sinensis var. sinensis and Camellia sinensis var. assamica, respectively. Then, we compared the expression profiles of flowering-related genes in floriferous and oliganthous cultivars, the result showed that PRR7, GI, GID1B and GID1C expression is correlated with the floral induction; LFY, PNF and PNY expression was correlated with floral bud formation. Transcriptome analysis also showed that GI, PRR7 and GID1 were correlated with stress-induced flowering. Thus, we proposed putative mechanisms of flowering in tea plants. This study provides new insights into flowering and a theoretical basis for balancing vegetative and reproductive growth in tea plants and other economical plants.


Asunto(s)
Camellia sinensis/genética , Flores/genética , Camellia sinensis/anatomía & histología , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/metabolismo , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética , Transcriptoma
20.
Plant Physiol Biochem ; 146: 392-402, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31794899

RESUMEN

Tea cultivars with leaf color variation have attracted increasing attention in tea production and research due to their unusual appearances and appealing flavors. However, the molecular mechanism underlying this variation is little known due to the unavailability of genetic transformation and a highly complex genome. Here, a natural tea plant mutant producing pale green branches (pgb) was discovered and characterized. Ultrastructural and biochemical analyses showed that the leaves of the pgb mutant had defective chloroplast structure and significantly lower pigment content than the normal control. Comprehensive expression detection of chloroplast-development-related genes further indicated that a significant downregulation of CsGLKs in the pgb mutant likely caused the chloroplast defect. Transcriptome analyses and polyphenolic compound determination highlighted a tight correlation between photosynthesis and secondary metabolite biosynthesis in tea plant. These results provide useful information illuminating the mechanism of chloroplast development and leaf color variation in tea plant.


Asunto(s)
, Cloroplastos , Flavonoides , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA