Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phytomedicine ; 104: 154241, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35749827

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) has replaced viral hepatitis as the main driver of the rising morbidity and mortality associated with cirrhosis and liver cancer worldwide, while no FDA-approved therapies are currently known. Kinsenoside (KD), naturally isolated from Anoectochilus roxburghii, possesses multiple biological activities, including lipolysis, anti-inflammation, and hepatoprotection. However, the effects of KD on NASH remain unclear. PURPOSE: This study aimed to explore the roles of KD in NASH and its engaged mechanisms. METHODS: Two typical animal models of NASH, mice fed a methionine-choline-deficient (MCD) diet (representing non-obese NASH) and mice fed a high-fat and -fructose diet (HFFD) (representing obese NASH), were used to investigate the effect of KD on NASH in vivo. Transcriptome sequencing was performed to elucidate the underlying mechanisms of KD. Lipopolysaccharide (LPS)-stimulated THP-1 cells and transforming growth factor ß1 (TGF-ß1)-activated LX-2 cells were applied to further explore the effects and mechanisms of KD in vitro. RESULTS: The intragastric administration of KD remarkably alleviated MCD/HFFD-induced murine NASH almost in a dose-dependent manner. Specifically, KD reduced lipid accumulation, inflammation, and fibrosis in the liver of NASH mice. KD ameliorated alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase (SOD), and malondialdehyde (MDA) abnormalities. In addition, it decreased the level of serum proinflammatory factors (IL-12p70, IL-6, TNF-α, MCP-1, IFN-γ) and the hepatic expression of typical fibrosis-related molecules (α-SMA, Col-I, TIMP-1). Mechanically, KD attenuated the MCD/HFFD-induced NASH through the inhibition of the NF-κB/NLRP3 signaling pathway. Consistently, KD reduced inflammation stimulated by LPS in THP-1 cells via suppressing the NF-κB/NLRP3 pathway. Furthermore, it prevented the activation of LX-2 cells directly, by inhibiting the proliferation stimulated by TGF-ß1, and indirectly, by inactivating the NLRP3 inflammasome in macrophages. CONCLUSION: For the first time, the practical improvement of NASH by KD was revealed. Our study found that KD exerted its alleviative effects on NASH through the inhibition of the NF-κB/NLRP3 signaling pathway. Given its hepatoprotective and nontoxic properties, KD has the potential to be a novel and effective drug to treat NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , 4-Butirolactona/análogos & derivados , Animales , Fibrosis , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Hígado , Metionina/metabolismo , Metionina/farmacología , Ratones , Ratones Endogámicos C57BL , Monosacáridos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
2.
Biomed Pharmacother ; 145: 112367, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34740097

RESUMEN

Cardiovascular comorbidities are pervasive in chronic obstructive pulmonary disease (COPD) and often result in serious adverse cardiovascular events. Tongxinluo (TXL) has been clinically verified to treat atherosclerosis (AS), improve lung function and alleviate dyspnoea. The present study aimed to explore the effect of lung microvascular barrier dysfunction on AS in COPD and the potential pulmonary protective mechanisms of TXL in COPD complicated with AS. COPD complicated with AS was induced in mice by cigarette smoke (CS) exposure and high-fat diet (HFD) feeding. The mice were treated with atorvastatin (ATO), TXL or combination therapy (ATO+TXL) for 20 weeks. Pulmonary function, lung pathology, serum lipid levels, atherosclerotic plaque area and indicators of barrier function, oxidative stress and ferroptosis in lung tissue were evaluated. In vitro, human pulmonary microvascular endothelial cells (HPMECs) were pretreated with TXL for 4 h and then incubated with cigarette smoke extract (CSE) and homocysteine (Hcy) for 36 h to induce barrier dysfunction. Then the indicators of barrier function, oxidative stress and ferroptosis were measured. The results demonstrate that CS aggravated dyslipidaemia, atherosclerotic plaque formation, pulmonary function decline, pathological injury, barrier dysfunction, oxidative stress and ferroptosis in the HFD-fed mice. However, these abnormalities were partially reversed by ATO and TXL. Similar results were observed in vitro. In conclusion, pulmonary microvascular barrier dysfunction plays an important role by which COPD affects the progression of AS, and ferroptosis may be involved. Moreover, TXL delays the progression of AS and reduces cardiovascular events by protecting the pulmonary microvascular barrier and inhibiting ferroptosis.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Células Endoteliales/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Animales , Aterosclerosis/patología , Células Cultivadas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ferroptosis/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Estrés Oxidativo/efectos de los fármacos , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Enfermedad Pulmonar Obstructiva Crónica/patología
3.
Front Pharmacol ; 12: 747325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35115920

RESUMEN

Background: Anoectochilus roxburghii (Orchidaceae) is a traditional Chinese medicinal herb with anti-inflammatory, antilipemic, liver protective, immunomodulatory, and other pharmacological activities. Kinsenoside (KD), which shows protective effects against a variety types of liver damage, is an active ingredient extracted from A. roxburghii. However, the liver protective effects and potential mechanisms of KD in alcoholic liver disease (ALD) remain unclear. This study aimed to investigate the liver protective activity and potential mechanisms of KD in ALD. Methods: AML12 normal mouse hepatocyte cells were used to detect the protective effect of KD against ethanol-induced cell damage. An alcoholic liver injury model was induced by feeding male C57BL/6J mice with an ethanol-containing liquid diet, in combination with intraperitoneal administration of 5% carbon tetrachloride (CCl4) in olive oil. Mice were divided into control, model, silymarin (positive control), and two KD groups, treated with different doses. After treatment, hematoxylin-eosin and Masson's trichrome staining of liver tissues was performed, and serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels were determined to assess the protective effect of KD against alcoholic liver injury. Moreover, proteomics techniques were used to explore the potential mechanism of KD action, and ELISA assay, immunohistochemistry, TUNEL assay, and western blotting were used to verify the mechanism. Results: The results showed that KD concentration-dependently reduced ethanol-induced lipid accumulation in AML12 cells. In ALD mice model, the histological examination of liver tissues, combined with the determination of ALT and AST serum levels, demonstrated a protective effect of KD in the alcoholic liver injury mice. In addition, KD treatment markedly enhanced the antioxidant capacity and reduced the endoplasmic reticulum (ER) stress, inflammation, and apoptosis compared with those in the model group. Furthermore, KD increased the phosphorylation level of AMP-activated protein kinase (AMPK), inhibited the mechanistic target of rapamycin, promoted the phosphorylation of ULK1 (Ser555), increased the level of the autophagy marker LC3A/B, and restored ethanol-suppressed autophagic flux, thus activating AMPK-dependent autophagy. Conclusion: This study indicates that KD alleviates alcoholic liver injury by reducing oxidative stress and ER stress, while activating AMPK-dependent autophagy. All results suggested that KD may be a potential therapeutic agent for ALD.

4.
Rev. bras. farmacogn ; 29(5): 637-643, Sept.-Oct. 2019. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1057827

RESUMEN

Abstract Anoectochilus roxburghii (Wall.) Lindl., Orchidaceae, is a Chinese medicinal plant which can be effective for some diseases such as hepatitis, nephritis, pneumonia. Its active ingredient is kinsenoside. The mechanisms of kinsenoside on the liver-protective effect have not been fully explored until today. The present study was aimed to investigate the protective effect and mechanism of kinsenoside on acute alcoholic liver injury. The protected activity of kinsenoside (10, 20 and 40 mg/kg) were investigated on acute alcoholic liver injury in mice. Male C57BL/6 J mice were fed with non-fat feed for 30 days and oral administrated 14 ml/kg bw of ethanol (50%) on the 31st day. The activities of serum aspartate aminotransferase, serum alanine aminotransferase, triacylglyceride and very low density lipoprotein were determined in serum. The hepatic levels of oxidative stress as glutathione, malondialdehyde were measured in liver homogenates. The levels of cytochrome P450 2E1 (CYP2E1) were measured by immunohistochemistry. Furthermore, histopathological observations were carried out on the separated livers of mice. It was suggested that the trends of acute hepatic injury and fatty degeneration induced by alcohol were reduced in the ethanol group after kinsenoside treatment. Compared to ethanol groups, triacylglyceride, malondialdehyde, very low density lipoprotein, reduced glutathione, serum alanine aminotransferase and serum aspartate aminotransferase levels of kinsenoside (20, 40 mg/kg) groups were decreased (p < 0.05). Meanwhile kinsenoside significantly decreased the level of protein CYP2E1. In conclusion, kinsenoside enhances antioxidant capacity of mice and antagonizes alcohol-induced lipid metabolism disorders. Besides, kinsenoside inhibits alcohol-caused hepatocyte apoptosis, reduces oxidative stress, and relieves hepatocyte death, which may be a mechanism of kinsenoside in the treatment of alcoholic liver.

5.
Holist Nurs Pract ; 32(5): 268-274, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30113961

RESUMEN

This study investigated complementary health practices (CHPs) at a Midwestern state university to examine regional usage rates. Study results demonstrated a high use of CHPs as compared with national studies, supporting significance of incorporating CHPs in the nursing curriculum to ensure culturally competent and safe care for all populations.


Asunto(s)
Terapias Complementarias/estadística & datos numéricos , Competencia Cultural , Etnicidad , Conductas Relacionadas con la Salud , Aceptación de la Atención de Salud , Enfermería Transcultural , Universidades , Adolescente , Adulto , Anciano , Diversidad Cultural , Curriculum , Bachillerato en Enfermería , Docentes , Femenino , Necesidades y Demandas de Servicios de Salud , Enfermería Holística , Humanos , Masculino , Persona de Mediana Edad , Medio Oeste de Estados Unidos , Estudiantes , Adulto Joven
6.
Free Radic Biol Med ; 104: 54-63, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28062359

RESUMEN

2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H2O2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds.


Asunto(s)
Cobre/toxicidad , Daño del ADN/efectos de los fármacos , Agua Potable , Contaminantes Ambientales/toxicidad , 8-Hidroxi-2'-Desoxicoguanosina , Quelantes/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Contaminantes Ambientales/metabolismo , Humanos , Hidroquinonas/metabolismo , Hidroquinonas/toxicidad , Radical Hidroxilo/metabolismo , Radical Hidroxilo/toxicidad , Nitrilos/metabolismo , Nitrilos/toxicidad , Oxidación-Reducción , Fenantrolinas/farmacología , Fenoles/metabolismo , Fenoles/toxicidad , Bifenilos Polibrominados/metabolismo , Bifenilos Polibrominados/toxicidad , Especies Reactivas de Oxígeno , Superóxido Dismutasa/química
7.
J Hazard Mater ; 287: 188-96, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25655422

RESUMEN

In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack.


Asunto(s)
Óxido de Aluminio/química , Óxido de Magnesio/química , Administración de Residuos/métodos , Zinc/química , Cerámica/química , Calor , Porosidad
8.
J Hazard Mater ; 170(1): 351-6, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19477068

RESUMEN

Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), considered as endocrine disruptors, tend to accumulate in fatty tissues. Dioxin-responsive element chemical activated luciferase gene expression assay (DRE-luciferase assay) has been recognized as a semi-quantitative method for screening dioxins for its fast and low-cost as compared with HRGC/HRMS. However, some problems with the bioassay, including specificity, detection variation resulted from different cleanup strategies, and uncertainty of false-negative or false-positive results, remain to be overcome. Cadmium is a prevalent environmental contaminant around the world. This study was aimed to examine the effects of cadmium on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of aryl hydrocarbon receptor (AhR)-mediated gene expression in human hepatoma cells (Huh7-DRE-Luc cells and Huh7 cells). Ethoxyresorufin-O-deethylase (EROD) and DRE-luciferase assay were employed to determine the enzyme activity of cytochrome P450 1A1 (CYP1A1) and activation of AhR, respectively. The results showed that Cd(2+) levels significantly inhibited the induction of TCDD-induced CYP1A1 and DRE luciferase activation in hepatoma cells. The 50% inhibited concentrations (IC(50)) of CdCl(2) were 0.414 microM (95% confidence interval (C.I.): 0.230-0.602 microM) in Huh7-DRE-Luc cells and 23.2 microM (95% C.I.: 21.7-25.4 microM) in Huh7 cells. Accordingly, prevention of interference with non-dioxin-like compounds in a DRE-luciferase assay is of great importance in an extensive cleanup procedure.


Asunto(s)
Cloruro de Cadmio/farmacología , Dibenzodioxinas Policloradas/farmacología , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Activación Transcripcional/efectos de los fármacos , Carcinoma Hepatocelular/patología , Citocromo P-450 CYP1A1/análisis , Citocromo P-450 CYP1A1/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Disruptores Endocrinos/farmacología , Contaminantes Ambientales , Humanos , Concentración 50 Inhibidora , Receptores de Hidrocarburo de Aril/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA