Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4634-4646, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802802

RESUMEN

Dead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-ß-D-glucuronide, oroxylin A-7-O-ß-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Scutellaria baicalensis/genética , Scutellaria baicalensis/química , Glucurónidos , Multiómica , Flavonoides/química
2.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142817

RESUMEN

As lower vertebrates, teleost species could be affected by dynamic aquatic environments and may respond to environmental changes through the hypothalamus-pituitary-gonad (HPG) axis to ensure their normal growth and sexual development. Chinese sea bass (Lateolabrax maculatus), euryhaline marine teleosts, have an extraordinary ability to deal with a wide range of salinity changes, whereas the salinity decrease during their sex-maturation season may interfere with the HPG axis and affect their steroid hormone metabolism, resulting in abnormal reproductive functioning. To this end, in this study, 40 HPG axis genes in the L. maculatus genome were systematically characterized and their copy numbers, phylogenies, gene structures, and expression patterns were investigated, revealing the conservation of the HPG axis among teleost lineages. In addition, freshwater acclimation was carried out with maturing male L. maculatus, and their serum cortisol and 11-ketotestosterone (11-KT) levels were both increased significantly after the salinity change, while their testes were found to be partially degraded. After salinity reduction, the expression of genes involved in cortisol and 11-KT synthesis (cyp17a, hsd3b1, cyp21a, cyp11c, hsd11b2, and hsd17b3) showed generally upregulated expression in the head kidneys and testes, respectively. Moreover, cyp11c and hsd11b2 were involved in the synthesis and metabolism of both cortisol and 11-KT, and after salinity change their putative interaction may contribute to steroid hormone homeostasis. Our results proved the effects of salinity change on the HPG axis and steroidogenic pathway in L. maculatus and revealed the gene interactions involved in the regulation of steroid hormone levels. The coordinated interaction of steroidogenic genes provides comprehensive insights into steroidogenic pathway regulation, as well as sexual development, in teleost species.


Asunto(s)
Lubina , Animales , Lubina/genética , Lubina/metabolismo , China , Gónadas/metabolismo , Hidrocortisona/metabolismo , Hipotálamo/metabolismo , Masculino , Complejos Multienzimáticos/metabolismo , Salinidad
3.
BMC Genom Data ; 22(1): 28, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418952

RESUMEN

BACKGROUND: Maize kernel filling, which is closely related to the process of double fertilization and is sensitive to a variety of environmental conditions, is an important component of maize yield determination. Silk is an important tissue of maize ears that can discriminate pollen and conduct pollination. Therefore, investigating the molecular mechanisms of kernel development and silk senescence will provide important information for improving the pollination rate to obtain high maize yields. RESULTS: In this study, transcript profiles were determined in an elite maize inbred line (KA105) to investigate the molecular mechanisms functioning in self-pollinated and unpollinated maize kernels and silks. A total of 5285 and 3225 differentially expressed transcripts (DETs) were identified between self-pollinated and unpollinated maize in a kernel group and a silk group, respectively. We found that a large number of genes involved in key steps in the biosynthesis of endosperm storage compounds were upregulated after pollination in kernels, and that abnormal development and senescence appeared in unpollinated kernels (KUP). We also identified several genes with functions in the maintenance of silk structure that were highly expressed in silk. Further investigation suggested that the expression of autophagy-related genes and senescence-related genes is prevalent in maize kernels and silks. In addition, pollination significantly altered the expression levels of senescence-related and autophagy-related genes in maize kernels and silks. Notably, we identified some specific genes and transcription factors (TFs) that are highly expressed in single tissues. CONCLUSIONS: Our results provide novel insights into the potential regulatory mechanisms of self-pollinated and unpollinated maize kernels and silks.


Asunto(s)
Perfilación de la Expresión Génica , Zea mays , Polen , Polinización/genética , Zea mays/genética
4.
Comput Biol Chem ; 78: 53-63, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30497020

RESUMEN

The plant-specific TCP transcription factors, which play critical roles in diverse aspects of biological processes, have been identified and analyzed in various plant species. However, no systematical study of TCP family genes in potato (Solanum tuberosum L.) has been undertaken. In this study, a total of 31 non-redundant TCP transcription factors of potato were identified and divided into two subfamilies including three distinct subclades. The various orthologous TCP genes in Arabidopsis, rice, potato and tomato were identified using synteny and phylogenetic analysis. Protein motif analysis demonstrated that StTCPs in the same subclade shared similar conserved motif structures. Gene structure analysis showed that almost all StTCPs displayed highly conserved exon-intron organization. The analysis of StTCP gene promoter regions revealed that multiple cis-acting elements were involved in plant growth, development, hormone responses as well as stress responses. The result of StTCP gene expression profiles showed they had tissue-specific expression patterns which implied their differentiated functions. According to the results of quantitative RT-PCR (qRT-PCR), 7 StTCP genes were dramatically up-regulated during the release of tuber dormancy and some specific StTCP genes were strongly responding to different abiotic stresses and multiple hormones, which suggested they had important roles in potato growth and development processes. The results of our findings could provide comprehensive insights in StTCP family genes of potato for further functional investigations.


Asunto(s)
Proteínas Bacterianas/genética , Regulación de la Expresión Génica de las Plantas/genética , Solanum tuberosum/genética , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Solanum tuberosum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA