Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 13(3)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328077

RESUMEN

Calcium acts as a universal secondary messenger that transfers developmental cues and stress signals for gene expression and adaptive growth. A prior study showed that abiotic stresses induce mutually independent cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc) increases in Arabidopsis thaliana root cells. However, gene expression networks deciphering [Ca2+]cyt and [Ca2+]nuc signalling pathways remain elusive. Here, using transgenic A. thaliana to selectively impair abscisic acid (ABA)- or methyl jasmonate (MeJA)-induced [Ca2+]cyt and [Ca2+]nuc increases, we identified [Ca2+]cyt- and [Ca2+]nuc-regulated ABA- or MeJA-responsive genes with a genome oligo-array. Gene co-expression network analysis revealed four Ca2+ signal-decoding genes, CAM1, CIPK8, GAD1, and CPN20, as hub genes co-expressed with Ca2+-regulated hormone-responsive genes and hormone signalling genes. Luciferase complementation imaging assays showed interactions among CAM1, CIPK8, and GAD1; they also showed interactions with several proteins encoded by Ca2+-regulated hormone-responsive genes. Furthermore, CAM1 and CIPK8 were required for MeJA-induced stomatal closure; they were associated with ABA-inhibited seed germination. Quantitative reverse transcription polymerase chain reaction analysis showed the unique expression pattern of [Ca2+]-regulated hormone-responsive genes in cam1, cipk8, and gad1. This comprehensive understanding of distinct Ca2+ and hormonal signalling will allow the application of approaches to uncover novel molecular foundations for responses to developmental and stress signals in plants.


Asunto(s)
Ácido Abscísico , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Acetatos , Arabidopsis/metabolismo , Calcio/metabolismo , Ciclopentanos , Hormonas , Oxilipinas , Estomas de Plantas/genética , Estomas de Plantas/metabolismo
2.
J Plant Physiol ; 240: 153000, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31220626

RESUMEN

In flowering plants, pollen development is a critical step for reproductive success and necessarily involves complex genetic regulatory networks. Calcium-dependent protein kinases (CPKs) are plant-specific calcium sensors involved in the regulation of plant development and adaption to the environment; however, whether they play a role in regulating male reproduction remains elusive. Here, we found that the knockdown of spikelet-specific OsCPK21 causes pollen abortion in OsCPK21-RNAi transgenic plants. Severe defects in pollen development initiated at stage 10 of anther development and simultaneous cell death occurred in the pollen cells of OsCPK21-RNAi plants. Microarray analysis and qRT-PCR revealed that the transcription of OsCPK21 is coordinated with that of MIKC*-type MADS box transcription factors OsMADS62, OsMADS63, and OsMADS68 during rice anther development. We further showed that OsCPK21 indirectly up-regulates the transcription of OsMADS62, OsMADS63, and OsMADS68 through the potential MYB binding site, DRE/CRT element, and/or new ERF binding motif localised in the promoter region of these three MADS genes. These findings suggest that OsCPK21 plays an essential role in pollengenesis, possibly via indirectly regulating the transcription of MIKC*-type MADS box proteins.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Interferencia de ARN
3.
PLoS One ; 13(5): e0195787, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29813101

RESUMEN

Calcium-dependent protein kinases (CPKs) play an essential role in the regulation of pollen tube growth. Although CPK genes have been identified in maize, and some have been functionally characterized, the molecular function of ZmCPKs associated with pollen tube development remains less well studied. Here, we report that a pollen-specific CPK, ZmCPK32, is involved in the regulation of pollen germination and tube extension. ZmCPK32 exhibited CPK activity and was localized on the plasma membrane and punctate internal membrane compartments via N-terminal acylation. In situ hybridization and real-time PCR revealed that ZmCPK32 transcripts accumulated in pollen and expression was dramatically upregulated during shedding. To elucidate the function of this gene, we transiently expressed a ZmCPK32-GFP fusion protein in tobacco pollen using microparticle bombardment. ZmCPK32 accumulation inhibited pollen germination and reduced pollen tube growth, but this effect was abolished when the kinase-inactive variant was expressed, indicating that kinase activity is critical for its regulatory function. In addition, the plasma membrane localization of ZmCPK32 is essential for regulating polar growth, as pollen expressing the cytosol-localized kinase displayed reduced tube length but germinated well. Moreover, the constitutively active form of ZmCPK32 enhanced the reduction in the germination rate, indicating that the specific activation of ZmCPK32 via calcium ions at the cortical growth point is essential for regulating appropriate germination. The results suggest that ZmCPK32 is functionally associated with pollen tube growth, and could represent a potential target for breeding male-sterile maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Plantas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polen/enzimología , Proteínas Quinasas/metabolismo , Zea mays/crecimiento & desarrollo , Proteínas de Plantas/genética , Tubo Polínico/metabolismo , Polinización , Proteínas Quinasas/genética , Transducción de Señal , Zea mays/metabolismo
4.
Mol Plant ; 8(12): 1737-50, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26384245

RESUMEN

Arabidopsis synaptotagmin 2 (SYT2) has been reported to participate in an unconventional secretory pathway in somatic cells. Our results showed that SYT2 was expressed mainly in the pollen of Arabidopsis thaliana. The pollen of syt2 T-DNA and RNA interference mutant lines exhibited reduced total germination and impeded pollen tube growth. Analysis of the expression of SYT2-GFP fusion protein in the pollen tube indicates that SYT2 was localized to distinct, patchy compartments but could co-localize with the Golgi markers, BODIPY TR C5 ceramide and GmMan1-mCherry. However, SYT2-DsRed-E5 was localized to the plasma membrane in Arabidopsis suspension cells, in addition to the Golgi apparatus. The localization of SYT2 at the plasma membrane was further supported by immunofluorescence staining in pollen tubes. Moreover, brefeldin A treatment inhibited the transport of SYT2 to the plasma membrane and caused SYT2 to aggregate and form enlarged compartments. Truncation of the SYT2-C2AB domains also resulted in retention of SYT2 in the Golgi apparatus. An in vitro phospholipid-binding assay showed that SYT2-C2AB domains bind to the phospholipid membrane in a calcium-dependent manner. Take together, our results indicated that SYT2 was required for pollen germination and pollen tube growth, and was involved in conventional exocytosis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Polen/crecimiento & desarrollo , Sinaptotagmina II/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Polen/genética , Polen/metabolismo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Sinaptotagmina II/química , Sinaptotagmina II/genética
5.
PLoS One ; 10(6): e0128758, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030746

RESUMEN

The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity.


Asunto(s)
Carotenoides/genética , Carotenoides/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Zea mays/genética , Zea mays/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonación Molecular/métodos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , ADN Complementario/genética , Endospermo/genética , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Luteína/genética , Luteína/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Alineación de Secuencia
6.
Biochim Biophys Acta ; 1724(1-2): 215-24, 2005 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-15923087

RESUMEN

Hesperetin (5,7,3'-trihydroxyl-4'-methoxyl-flavanone) is an important bioactive compound in Chinese traditional medicine and has multiple biological and pharmacological activities. The interaction of hesperetin with human serum albumin (HSA) has been investigated by UV absorption, fluorescence and Fourier transformed infrared spectrometry. Fluorescence results showed that one molecule of protein combined with one molecule of drug at the molar ratio of drug to HSA ranging from 0.3 to 7 and the binding affinity (K(A)) was 8.11x10(4) M(-1). The primary binding site was most likely located on subdomain IIA. The binding ability of the drug to protein decreased from pH 6.4 to 8.4 in the drug to protein molar ratio of 1. Combining the curve-fitting results of infrared amide I band in D2O and H2O phosphate buffers, the alterations of protein secondary structure after drug complexation were estimated. With increasing the drug concentration, the percentage of protein alpha-helix structure decreased gradually. The reduction of protein alpha-helix structure reached about 7-9% after the protein interacted with hesperetin in D2O and H2O buffer solution at pH 7.4 when the drug to protein molar ratio was 10. This indicated a partial unfolding of HSA in the presence of the drug. From the results of UV absorption, fluorescence and Fourier transformed infrared spectrometry, the binding mode was discussed. The main mechanism of protein fluorescence quenching was a static quenching process and the hydroxyl groups of the drug in its neutral part played an important role in the binding process.


Asunto(s)
Hesperidina/química , Albúmina Sérica/química , Hesperidina/farmacología , Humanos , Concentración de Iones de Hidrógeno , Unión Proteica , Conformación Proteica/efectos de los fármacos , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA