Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279341

RESUMEN

Universal stress proteins (USPs) play an important regulatory role in responses to abiotic stress. Most of the research related to USPs so far has been conducted on plant models such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa L.), and cotton (Gossypium hirsutum L.). The potato (Solanum tuberosum L.) is one of the four major food crops in the world. The potato is susceptible to mechanical damage and infection by pathogenic fungi during transport and storage. Deoxynivalenol (DON) released by Fusarium can seriously degrade the quality of potatoes. As a result, it is of great significance to study the expression pattern of the potato StUSP gene family under abiotic stress conditions. In this study, a total of 108 USP genes were identified from the genome of the Atlantic potato, divided into four subgroups. Based on their genetic structure, the physical and chemical properties of their proteins and other aspects of their biological characteristics are comprehensively analyzed. Collinear analysis showed that the homologous genes of StUSPs and four other representative species (Solanum lycopersicum, Arabidopsis, Oryza sativa L., and Nicotiana attenuata) were highly conserved. The cis-regulatory elements of the StUSPs promoter are involved in plant hormones, environmental stress, mechanical damage, and light response. RNA-seq analysis showed that there are differences in the expression patterns of members of each subgroup under different abiotic stresses. A Weighted Gene Coexpression Network Analysis (WGCNA) of the central gene showed that the differential coexpression gene is mainly involved in the plant-pathogen response process, plant hormone signal transduction, and the biosynthesis process of secondary metabolites. Through qRT-PCR analysis, it was confirmed that StUSP13, StUSP14, StUSP15, and StUSP41 may be important candidate genes involved in the response to adversity stress in potatoes. The results of this study provide a basis for further research on the functional analysis of StUSPs in the response of potatoes to adversity stress.


Asunto(s)
Arabidopsis , Solanum tuberosum , Tricotecenos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Choque Térmico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas
2.
Environ Res ; 211: 113084, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35299036

RESUMEN

Thiamethoxam (TMX) is commonly applied on leek plants by root irrigation. It might be taken up by leek plants and thus has lasting dietary risk. In this study, the uptake, translocation, and metabolism of TMX in leek plants were investigated. The results obtained from both the hydroponic and soil experiments indicated that TMX could be easily translocated upward and accumulated in leek shoots after being absorbed by roots. The total absorbed TMX amount (Mtotal) in leek plants from the tested soils varied greatly with its adsorption governed by soil characteristics. Interestingly, Mtotal was closely correlated with the concentration of TMX in in situ pore water, indicating that TMX in in situ pore water could be a useful approach to predict uptake of this chemical by leek plants from various soils. Profoundly, clothianidin (CLO) was detected with concentration of 0.07-1.54 mg/kg in roots and 0.27-4.12 mg/kg in shoots at 14 d, respectively, suggesting that TMX is easily converted into CLO in leek plants. The results showed that TMX used in soil is easily absorbed by leek and accumulated in edible parts accompanying with formation of CLO.


Asunto(s)
Insecticidas , Contaminantes del Suelo , Insecticidas/metabolismo , Cebollas/metabolismo , Suelo , Contaminantes del Suelo/análisis , Tiametoxam , Agua
3.
Theranostics ; 8(5): 1312-1326, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29507622

RESUMEN

Rationale: The antitumor activity of high-dose ascorbate has been re-evaluated recently, but the mechanism underlying cell-specific sensitivity to ascorbate has not yet been clarified. Methods: The effects of high-dose ascorbate on gastric cancer were assessed using cancer cell lines with high and low expression of GLUT1 via flow cytometry and colony formation assays in vitro and patient-derived xenografts in vivo. Results: In this study, we demonstrated that gastric cancer cells with high GLUT1 expression were more sensitive to ascorbate treatment than cells with low GLUT1 expression. GLUT1 knockdown significantly reversed the therapeutic effects of pharmacological ascorbate, while enforced expression of GLUT1 enhanced the sensitivity to ascorbate treatment. The efficacy of pharmacological ascorbate administration in mice bearing cell line-based and patient-derived xenografts was influenced by GLUT1 protein levels. Mechanistically, ascorbate depleted intracellular glutathione, generated oxidative stress and induced DNA damage. The combination of pharmacological ascorbate with genotoxic agents, including oxaliplatin and irinotecan, synergistically inhibited gastric tumor growth in mouse models. Conclusions: The current study showed that GLUT1 expression was inversely correlated with sensitivity of gastric cancer cells to pharmacological ascorbate and suggested that GLUT1 expression in gastric cancer may serve as a marker for sensitivity to pharmacological ascorbate.


Asunto(s)
Ácido Ascórbico/farmacología , Transportador de Glucosa de Tipo 1/metabolismo , Oxaliplatino/farmacología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Animales , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Glutatión/metabolismo , Humanos , Irinotecán/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Modelos Biológicos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Hazard Mater ; 211-212: 62-7, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22138176

RESUMEN

In the present work, we demonstrated a simple and green synthesis route for shape-controlled ZnS nanocrystals, where only environmentally benign chemicals, namely sulfur, zinc oxide and olive oil, were employed. By controlling the experimental conditions, we were able to tune the band edge and trap state photoluminescences of ZnS nanocrystals and obtain pure excitonic photoluminescence that was rarely observed in literature. The trap state emission was derived from sulfur vacancies and would be eliminated when an excess of sulfur was used during the synthesis. Additionally, the morphology of ZnS nanocrystals could be tuned to appear like flowers, where the formation mechanism was systematically discussed.


Asunto(s)
Tecnología Química Verde/métodos , Nanopartículas/química , Sulfuros/química , Compuestos de Zinc/química , Luminiscencia , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Aceite de Oliva , Aceites de Plantas/química , Espectrofotometría Ultravioleta , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA