Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 10: e13949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061750

RESUMEN

Background: The difference of metabolites in medicinal plants has always been concerned to be influenced by external environmental factors. However, the relationship between endophytes and host metabolites remains unclear. Methods: In this study, we used 16S and ITS amplicon sequencing to compare endophyte diversity among different tissue types and ages of Gentiana officinalis. Endophyte diversity and abundance was also analyzed in relation to the abundance of four secondary metabolites (Gentiopicroside, Loganic acid, Swertiamarine and Sweroside). Results: The diversity and richness of G. officinalis endophyte differed as a function of tissue types and ages. Four metabolites of G. officinalis were significantly correlated with the abundance of dominant endophyte genera. The predictive function analysis showed that metabolism was main function of endophytic bacteria in different tissue and year root samples, while saprotroph was dominant trophic modes of endophytic fungi in the different year root samples. The dominant trophic modes of endophytic fungi was saprotroph and pathotroph, and relative abundances differed in the different tissue samples. The results of this study will help to elucidate the plant-microbial interactions and provide key information on the role of endophytes in the production of G.officinalis and its important metabolites.


Asunto(s)
Gentiana , Plantas Medicinales , Endófitos/genética , Hongos/genética , Bacterias
2.
BMC Microbiol ; 22(1): 90, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392806

RESUMEN

BACKGROUND: The influence of external environmental factors on secondary metabolites of medicinal plants has always been studied. However, little is known about the relationships between endophytes and host metabolites, especially the relationship differences between different plant species. Thus, we used high-throughput sequencing methods to compare endophyte diversity from roots of two closely related species, Gentiana officinalis and G. siphonantha, from the same production area, and analyze the association with four secondary metabolites (Gentiopicroside, Loganic acid, Swertiamarine and Sweroside). RESULTS: The fungal and bacteria communities' richness and diversity of G. siphonantha was higher than G. officinalis. Ascomycota and Proteobacteria were dominant fungal and bacterial phylum of the two closely related species. At the genus level, Tetracladium and Cadophora were dominant fungal genus in G. officinalis and G. siphonantha samples, respectively. While Pseudomonas was dominant bacterial genus in two closely related species, with relative abundances were 8.29 and 8.05%, respectively. Spearman analysis showed that the content of loganic acid was significantly positively correlated with endophytic fungi, the content of gentiopicroside, swertiamarine and sweroside were significantly positively correlated with endophytic bacteria in the two related species. PICRUSt and FUNGuild predictive analysis indicated that metabolism and saprotroph was primary function of endophytic bacteria and fungi in the two related species. CONCLUSION: Our results will expand the knowledge on relationships of plant-microbe interactions and offer pivotal information to reveal the role of endophytes in the production of Gentiana plant and its important secondary metabolite.


Asunto(s)
Ascomicetos , Gentiana , Plantas Medicinales , Ascomicetos/genética , Bacterias/genética , Endófitos/genética , Hongos/genética , Raíces de Plantas/microbiología
3.
Sci Rep ; 12(1): 2461, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165323

RESUMEN

Plants living at the edge of their range boundary tend to suffer an overall decline in their fitness, including growth and reproduction. However, the reproductive performance of plants in artificially expanded habitats is rarely investigated, although this type of study would provide a better understanding of range limitations and improved conservation of ex situ plants. In the current study, we transplanted a narrowly dispersed species of Gentiana officinalis H. Smith (Gentianaceae) from its natural area of distribution to two different elevations and natural elevation to comprehensively study its pollination biology, including flowering phenology and duration, floral display, reproductive allocation, pollinator activity, and seed production. The findings indicated that the starting point and endpoint of the flowering phenology of G. officinalis were earlier at the low elevation, but the peak flowering periods did not differ significantly between any of the experimental plots. When transplanted, the flowering duration, especially the female phase, was reduced; the floral display, including spray numbers, flower numbers, and flower size (length and width), decreased, especially at high elevations. Moreover, the pollen numbers and pollen-ovule ratio were decreased at both high and low elevations, although the ovule numbers showed no change, and aboveground reproductive allocation was decreased. Furthermore, pollinator richness and activity were significantly decreased, and the seed-set ratio decreased under both natural conditions and with supplemental pollination. Finally, more severe pollen limitation was found in transplanted individuals. These results indicated an overall decrease in reproductive fitness in plants living outside their original area of distribution when the geographical range of G. officinalis was expanded.


Asunto(s)
Ecosistema , Aptitud Genética , Gentiana/genética , Dispersión de las Plantas/genética , Polinización/genética , Flores/crecimiento & desarrollo , Polen/genética , Estaciones del Año , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA