Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Drug Metab ; 24(10): 709-722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936469

RESUMEN

INTRODUCTION: Crocin is one of the main components of Crocus sativus L. and can alleviate oxidative stress and inflammation in diabetic nephropathy (DN). However, the specific mechanism by which crocin treats DN still needs to be further elucidated. METHOD: In the present study, a mouse model of DN was first established to investigate the therapeutic effect of crocin on DN mice. Subsequently, non-targeted metabolomics techniques were used to analyze the mechanisms of action of crocin in the treatment of DN. The effects of crocin on CYP4A11/PPARγ and TGF-ß/Smad pathway were also investigated. RESULT: Results showed that crocin exhibited significant therapeutic and anti-inflammatory, and anti-oxidative effects on DN mice. In addition, the non-targeted metabolomics results indicated that crocin treatment affected several metabolites in kidney. These metabolites were mainly associated with biotin metabolism, riboflavin metabolism, and arachidonic acid metabolism. Furthermore, crocin treatment upregulated the decreased levels of CYP4A11 and phosphorylated PPARγ, and reduced the increased levels of TGF-ß1 and phosphorylated Smad2/3 in the kidneys of DN mice. CONCLUSION: In conclusion, our study validated the considerable therapeutic, anti-inflammatory, and antioxidative impacts of crocin on DN mice. The mechanism of crocin treatment may be related to the regulation of biotin riboflavin and arachidonic acid metabolism, the activation of CYP4A11/PPARγ pathway, and the inhibition of TGF-ß/Smad pathway in the kidney.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/uso terapéutico , PPAR gamma/farmacología , PPAR gamma/uso terapéutico , Ácido Araquidónico/farmacología , Ácido Araquidónico/uso terapéutico , Biotina/metabolismo , Biotina/farmacología , Biotina/uso terapéutico , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/uso terapéutico , Antiinflamatorios/uso terapéutico , Riboflavina/metabolismo , Riboflavina/farmacología , Riboflavina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico
2.
J Diabetes Res ; 2023: 9164883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840577

RESUMEN

Diabetic nephropathy (DN) is a metabolic disease wherein chronic hyperglycemia triggers various renal cell dysfunctions, eventually leading to progressive kidney failure. Rosa laevigata Michx. is a traditional Chinese herbal medicine. Many studies have confirmed its antioxidative, anti-inflammatory, and renoprotective effects. However, the effects and mechanisms of Rosa laevigata Michx. polysaccharide (RLP) in DN remain unclear. In this study, a DN mouse model was established to investigate the therapeutic effect of RLP on DN mice. Then, nontargeted metabolomics was used to analyze the potential mechanism of RLP in the treatment of DN. Finally, the effects of RLP on ferroptosis and the PI3K/AKT pathway were investigated. The results demonstrated that RLP effectively alleviated renal injury and reduced inflammation and oxidative stress in the kidney. In addition, nontargeted metabolomic analysis indicated that RLP could modulate riboflavin metabolism and tryptophan metabolism in DN mice. Notably, ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney were also ameliorated following RLP treatment. In conclusion, this study confirmed that RLP had a significant therapeutic effect on DN mice. Furthermore, RLP treatment modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Rosa , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Triptófano/farmacología , Triptófano/uso terapéutico , Transducción de Señal , Apoptosis
3.
Front Cell Infect Microbiol ; 12: 1051962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439213

RESUMEN

Baihu Rensheng decoction (BHRS) can effectively improve insulin resistance (IR) and decrease blood glucose in diabetic patients. However, its specific mechanism of action remains unclear. In this study, a type 2 diabetes mellitus (T2DM) rat model was established using a high-fat diet combined with streptozotocin (STZ) injection and treated with BHRS. Firstly, the therapeutic and anti-inflammatory effects of BHRS on T2DM were evaluated. Secondly, the effects of BHRS on gut permeability were evaluated and western blot was used to detect the changes of TLR4/NF-κB pathway-related protein expressions in liver. Finally, 16S rRNA sequencing was used to detect alteration of gut microbiota diversity and abundance in rats after BHRS treatment. Our results showed that BHRS could alleviate the hyperglycemia, hyperlipidemia, IR, and pathological changes of liver, pancreas, and kidney in T2DM rats. BHRS could also decrease the levels of pro-inflammatory cytokines and inhibit the oxidative stress. Immunohistochemistry showed BHRS could increase the expression tight junction-related proteins (ZO-1 and occludin) in colon. Besides, the level of LPS in serum was decreased after BHRS treatment. Western blot results showed that the protein expression of TLR4, MyD88 and the phosphorylation IκB, and NF-κBp65 were lowered after BHRS treatment. 16S rRNA sequencing showed that BHRS treatment altered the diversity of gut microbiotra and decreases the Firmicutes/Bacteroidetes (F to B) ratio at the phylum level. At the genus level, BHRS could increase the relative abundances of Lactobacillus, Blautia, and Anaerostipes and decrease the relative abundances of Allobaculum, Candidatus Saccharimonas, and Ruminococcus. In conclusion, our study revealed the various ameliorative effects of BHRS on T2DM, including improving the liver and kidney functions and alleviating the hyperglycemia, hyperlipidemia, pathological changes, oxidative stress and inflammatory response. The mechanisms of BHRS on T2DM are likely linked to the repair of gut barrier and the inhibition of TLR4/NF-κB-mediated inflammatory response and the improvement in the dysbiosis of gut microbiota.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglucemia , Hiperlipidemias , Panax , Ratas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , FN-kappa B , ARN Ribosómico 16S/genética , Receptor Toll-Like 4 , Permeabilidad , Hiperlipidemias/tratamiento farmacológico
4.
Front Endocrinol (Lausanne) ; 13: 1106875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743916

RESUMEN

Qingrequzhuo capsule (QRQZ), composed of Morus alba L., Coptis chinensis Franch., Anemarrhena asphodeloides Bunge, Alisma plantago-aquatica subsp. orientale (Sam.) Sam., Citrus × aurantium L., Carthamus tinctorius L., Rheum palmatum L., Smilax glabra Roxb., Dioscorea oppositifolia L., Cyathula officinalis K.C.Kuan, has been used to treat nonalcoholic steatohepatitis (NASH) in clinic. However, the mechanism of QRQZ on NASH remains unclear. Recent studies have found that the dysfunction of gut microbiota could impair the gut barrier and induce the activation of TLR4/NF-kB signaling pathway, and further contribute to the inflammatory response in NASH. Modulating the gut microbiota to reduce inflammation could prevent the progression of NASH. In this study, a mouse model of NASH was generated by methionine and choline deficient diet (MCD) and treated with QRQZ. First, we evaluated the therapeutic effects of QRQZ on liver injury and inflammation in the NASH mice. Second, the changes in the gut microbiota diversity and abundance in each group of mice were measured through 16S rRNA sequencing. Finally, the effects of QRQZ on gut mucosal permeability, endotoxemia, and liver TLR4/NF-kB signaling pathway levels were examined. Our results showed that QRQZ significantly reduced the lipid accumulation in liver and the liver injury in NASH mice. In addition, QRQZ treatment decreased the levels of inflammatory cytokines in liver. 16S rRNA sequencing showed that QRQZ affected the diversity of gut microbiota and a f f e c t e d t h e r e l a t i v e a b u n d a n c e s o f D u b o s i e l l a , Lachnospiraceae_NK4A136_group, and Blautiain NASH mice. Besides, QRQZ could increase the expression of tight junction proteins (zonula occludens-1 and occludin) in gut and decrease the lipopolysaccharide (LPS) level in serum. Western blot results also showed that QRQZ treatment decreased the protein expression ofTLR4, MyD88 and the phosphorylation of IkB and NF-kBp65 and qPCR results showed that QRQZ treatment down-regulated the gene expression of interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a in liver. In conclusion, our study demonstrated that QRQZ could reduce the lipid accumulation and inflammatory response in NASH model mice. The mechanisms of QRQZ on NASH were associated with modulating gut microbiota, thereby inducing the tight junction of gut barrier, reducing the endotoxemia and inhibiting the activation of TLR4/NFkB signaling pathway in liver.


Asunto(s)
Medicamentos Herbarios Chinos , Endotoxemia , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Colina , Dieta , Microbioma Gastrointestinal/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Metionina/metabolismo , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Racemetionina , ARN Ribosómico 16S , Transducción de Señal , Uniones Estrechas/metabolismo , Receptor Toll-Like 4/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico
5.
J Oncol ; 2021: 7764817, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691178

RESUMEN

Type 2 diabetes mellitus (T2DM) with nonalcoholic fatty liver disease (NAFLD) is a pathological metabolic disease characterized by high ketone lipid based on abnormal lipid metabolism. Compared with patients with single T2DM or NAFLD, T2DM complicated with NAFLD has more complicated pathogenic factors and pathological processes. Hepatocellular carcinoma (HCC), the leading malignancy arising from cirrhosis, is the second most lethal cancer globally. The purpose of this study was to clarify the main risk factors of T2DM with NAFLD and HCC. There are many challenges in the diagnosis and treatment of T2DM patients with NAFLD and HCC. The current gold standard is to adjust treatment strategy, optimize metabolic control, and improve liver phenotype. It is necessary to identify further the risk factors driving the progression of T2DM with NAFLD and HCC and evaluate new therapeutic targets, in addition to exploring the syndromic forms of T2DM combined with NAFLD and providing a theoretical basis for early prevention, diagnosis, and treatment of the disease using traditional Chinese medicine (TCM).

6.
Zhongguo Zhong Yao Za Zhi ; 33(6): 672-5, 2008 Mar.
Artículo en Chino | MEDLINE | ID: mdl-18590198

RESUMEN

OBJECTIVE: To explore the protective mechanism of officeihale on the vascular pathological process in diabetes mellitus (DM) rats. METHOD: After the DM rat model was established, 24 DM rats were randomly divided into model group (12 DM rats) and Rheum officeinale group (12 DM rats). Rheum officeinale was orally given in 10 g kg(-1) per day, and the other two groups were given equal pure water. 8 weeks later, blood samples were collected to determine the level of nitric oxide (NO) and endothelin-1 (ET-1). Thoracic aortic rings was prepared to observe the inhibiting effect of Ach with different concentration on contraction caused by NE. Another part of aorta was made to observe the expression of ICAM-1 and VCAM-1 by method of SP immunohistochemistry staining, RESULT: Rheum officeinale group obviously decreased the level of ET-1 and increased the NO compared with model group (P <0.05). The expression of ICAM-1 and VCAM-1 could be obviously inhibited in Rheum officeinale group compared with model group. (P <0.05). CONCLUSION: Rheum officeinale could decrease the level of ET-1 with increased the NO in diabetes rats, and inhibit the expression of ICAM-1 and VCAM-1, which may be mechanisms of protecting the endothelium of vessel in diabetes rats.


Asunto(s)
Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Diabetes Mellitus/patología , Medicamentos Herbarios Chinos/farmacología , Sustancias Protectoras/farmacología , Rheum/química , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Glucemia/metabolismo , Vasos Sanguíneos/metabolismo , Endotelina-1/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Regulación de la Expresión Génica/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA