Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124136, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467098

RESUMEN

Rapid and scientific quality evaluation is a hot topic in the research of food and medicinal plants. With the increasing popularity of derivative products from Eucommia ulmoides leaves, quality and safety have attracted public attention. The present study utilized multi-source data and traditional machine learning to conduct geographical traceability and content prediction research on Eucommia ulmoides leaves. Explored the impact of different preprocessing methods and low-level data fusion strategy on the performance of classification and regression models. The classification analysis results indicated that the partial least squares discriminant analysis (PLS-DA) established by low-level fusion of two infrared spectroscopy techniques based on first derivative (FD) preprocessing was most suitable for geographical traceability of Eucommia ulmoides leaves, with an accuracy rate of up to 100 %. Through regression analysis, it was found that the preprocessing methods and data blocks applicable to the four chemical components were inconsistent. The optimal partial least squares regression (PLSR) model based on aucubin (AU), geniposidic acid (GPA), and chlorogenic acid (CA) had a residual predictive deviation (RPD) value higher than 2.0, achieving satisfactory predictive performance. However, the PLSR model based on quercetin (QU) had poor performance (RPD = 1.541) and needed further improvement. Overall, the present study proposed a strategy that can effectively evaluate the quality of Eucommia ulmoides leaves, while also providing new ideas for the quality evaluation of food and medicinal plants.


Asunto(s)
Eucommiaceae , Plantas Medicinales , Eucommiaceae/química , Plantas Medicinales/química , Quercetina/análisis , Geografía , Análisis de los Mínimos Cuadrados , Hojas de la Planta/química
2.
Plant Methods ; 20(1): 43, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493140

RESUMEN

BACKGROUND: Dendrobium officinale is a medicinal plant with high commercial value. The Dendrobium officinale market in Yunnan is affected by the standardization of medicinal material quality control and the increase in market demand, mainly due to the inappropriate harvest time, which puts it under increasing resource pressure. In this study, considering the high polysaccharide content of Dendrobium leaves and its contribution to today's medical industry, (Fourier Transform Infrared Spectrometer) FTIR combined with chemometrics was used to combine the yields of both stem and leaf parts of Dendrobium officinale to identify the different harvesting periods and to predict the dry matter content for the selection of the optimal harvesting period. RESULTS: The Three-dimensional correlation spectroscopy (3DCOS) images of Dendrobium stems to build a (Split-Attention Networks) ResNet model can identify different harvesting periods 100%, which is 90% faster than (Support Vector Machine) SVM, and provides a scientific basis for modeling a large number of samples. The (Partial Least Squares Regression) PLSR model based on MSC preprocessing can predict the dry matter content of Dendrobium stems with Factor = 7, RMSE = 0.47, R2 = 0.99, RPD = 8.79; the PLSR model based on SG preprocessing can predict the dry matter content of Dendrobium leaves with Factor = 9, RMSE = 0.2, R2 = 0.99, RPD = 9.55. CONCLUSIONS: These results show that the ResNet model possesses a fast and accurate recognition ability, and at the same time can provide a scientific basis for the processing of a large number of sample data; the PLSR model with MSC and SG preprocessing can predict the dry matter content of Dendrobium stems and leaves, respectively; The suitable harvesting period for D. officinale is from November to April of the following year, with the best harvesting period being December. During this period, it is necessary to ensure sufficient water supply between 7:00 and 10:00 every day and to provide a certain degree of light blocking between 14:00 and 17:00.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123848, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266602

RESUMEN

Gentian, an herb resource known for its antioxidant properties, has garnered significant attention. However, existing methods are time-consuming and destructive for assessing the antioxidant activity in gentian root samples. In this study, we propose a method for swiftly predicting the antioxidant activity of gentian root using FT-IR spectroscopy combined with chemometrics. We employed machine learning and deep learning models to establish the relationship between FT-IR spectra and DPPH free radical scavenging activity. The results of model fitting reveal that the deep learning model outperforms the machine learning model. The model's performance was enhanced by incorporating the Double-Net and residual connection strategy. The enhanced model, named ResD-Net, excels in feature extraction and also avoids gradient vanishing. The ResD-Net model achieves an R2 of 0.933, an RMSE of 0.02, and an RPD of 3.856. These results support the accuracy and applicability of this method for rapidly predicting antioxidant activity in gentian root samples.


Asunto(s)
Antioxidantes , Gentiana , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Extractos Vegetales
4.
Anal Chim Acta ; 1280: 341869, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858569

RESUMEN

BACKGROUND: The fruits and seeds of genus Amomum are well-known as medicinal plants and edible spices, and are used in countries such as China, India and Vietnam to treat malaria, gastrointestinal disorders and indigestion. The morphological differences between different species are relatively small, and technical characterization and identification techniques are needed. RESULTS: Fourier transform near infrared spectroscopy (FT-NIR) and gas chromatography-mass spectrometry (GC-MS), combined with principal component analysis and two-dimensional correlation analysis were used to characterize the chemical differences of Amomum tsao-ko, Amomum koenigii, and Amomum paratsaoko. The targets and pathways for the treatment of diabetes mellitus in three species were predicted using network pharmacology and screened for the corresponding pharmacodynamic components as potential quality markers. The results of "component-target-pathway" network showed that (+)-Nerolidol, 2-Nonanol, α-Terpineol, α-Pinene, 2-Nonanone had high degree values and may be the main active components. Partial least squares-discriminant analysis (PLS-DA) was further used to select for differential metabolites and was identified as a potential quality marker, 11 in total. PLS-DA and residual network (ResNet) classification models were developed for the identification of 3 species of the genus Amomum, ResNet model is more suitable for the identification study of large volume samples. SIGNIFICANCE: This study characterizes the differences between the three species in a visual way and also provides a reliable technique for their identification, while demonstrating the ability of FT-NIR spectroscopy for fast, easy and accurate species identification. The results of this study lay the foundation for quality evaluation studies of genus Amomum and provide new ideas for the development of new drugs for the treatment of diabetes mellitus.


Asunto(s)
Amomum , Diabetes Mellitus , Plantas Medicinales , Amomum/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Plantas Medicinales/química , Frutas
5.
Front Plant Sci ; 14: 1140691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223798

RESUMEN

Introduction: Polygonatum kingianum is a traditional medicinal plant, and processing has significantly impacts its quality. Methods: Therefore, untargeted gas chromatography-mass spectrometry (GC-MS) and Fourier transform-near-infrared spectroscopy (FT-NIR) were used to analyze the 14 processing methods commonly used in the Chinese market.It is dedicated to analyzing the causes of major volatile metabolite changes and identifying signature volatile components for each processing method. Results: The untargeted GC-MS technique identified a total of 333 metabolites. The relative content accounted for sugars (43%), acids (20%), amino acids (18%), nucleotides (6%), and esters (3%). The multiple steaming and roasting samples contained more sugars, nucleotides, esters and flavonoids but fewer amino acids. The sugars are predominantly monosaccharides or small molecular sugars, mainly due to polysaccharides depolymerization. The heat treatment reduces the amino acid content significantly, and the multiple steaming and roasting methods are not conducive to accumulating amino acids. The multiple steaming and roasting samples showed significant differences, as seen from principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on GC-MS and FT-NIR. The partial least squares discriminant analysis (PLS-DA) based on FT-NIR can achieve 96.43% identification rate for the processed samples. Discussion: This study can provide some references and options for consumers, producers, and researchers.

6.
J Ethnopharmacol ; 310: 116382, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36948262

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium is a kind of medicine food homology plant. Dendrobium has long been used to strengthen "Yin" and tonify five viscera. AIM OF THIS REVIEW: This paper presents a systematic review of the folk usage, chemical composition and pharmacological activity of Dendrobium, aiming to provide a reference for subsequent in-depth understanding and better exploitation of health food, medicine, and natural products. MATERIALS AND METHODS: Available information about the genus Dendrobium was collected via Web of Science, PubMed, Science Direct, Scopus, APA-Psy Articles, Google Scholar, Connected Papers, Springer Search, and KNCI. The keywords for this article are Dendrobium, traditional use, chemical diversity and pharmacological activity. Use the "Dictionary of Chinese Ethnic Medicine" to provide 23 kinds of Dendrobium with medicinal value, the Latin name of Dendrobium is verified by the Flora of China (www.iplant.cn), and its species distribution and related information are collected. RESULTS: There are 78 species of Dendrobium in China, 14 of which are endemic to China. At present, 450 compounds including sesquiterpenoids, lignans compounds, phenolic compounds, phenanthrene compounds, bibenzyls, polysaccharides and flavonoids have been isolated and identified from at least 50 species of Dendrobium. Among them, bibenzyls and polysaccharides are the main active components, phenolics and lignans are widely distributed, sesquiterpenes are the most common chemical constituents in genus Dendrobium plants. The most popular research objects are Dendrobium officinale and Dendrobium huoshanense. CONCLUSIONS: Based on traditional folk uses, chemical composition and pharmacological studies, Dendrobium is considered a promising medicinal and edible plant with multiple pharmacological activities. In addition, a large number of clinical applications and further studies on single chemical components based on the diversity of chemical structures should be conducted, which will lay the foundation for the scientific utilization of genus Dendrobium.


Asunto(s)
Dendrobium , Lignanos , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/farmacología , Medicina Tradicional China , Etnofarmacología
7.
Crit Rev Anal Chem ; 53(7): 1393-1418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34991387

RESUMEN

Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.


Asunto(s)
Quimiometría , Plantas Medicinales , Humanos , Plantas Medicinales/química , Espectrometría de Masas/métodos , Tecnología , Extractos Vegetales
8.
J Pharm Anal ; 13(12): 1388-1407, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38223450

RESUMEN

In traditional medicine and ethnomedicine, medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide. In particular, the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019 (COVID-19) pandemic has attracted extensive attention globally. Medicinal plants have, therefore, become increasingly popular among the public. However, with increasing demand for and profit with medicinal plants, commercial fraudulent events such as adulteration or counterfeits sometimes occur, which poses a serious threat to the clinical outcomes and interests of consumers. With rapid advances in artificial intelligence, machine learning can be used to mine information on various medicinal plants to establish an ideal resource database. We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants. The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants. The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.

9.
Crit Rev Anal Chem ; : 1-20, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409298

RESUMEN

Herbal medicines (HMs) have been utilized to prevent and treat human ailments for thousands of years. Especially, HMs have recently played a crucial role in the treatment of COVID-19 in China. However, HMs are susceptible to various factors during harvesting, processing, and marketing, affecting their clinical efficacy. Therefore, it is necessary to conclude a rapid and effective method to study HMs so that they can be used in the clinical setting with maximum medicinal value. Non-targeted analytical technology is a reliable analytical method for studying HMs because of its unique advantages in analyzing unknown components. Based on the extensive literature, the paper summarizes the benefits, limitations, and applicability of non-targeted analytical technology. Moreover, the article describes the application of non-targeted analytical technology in HMs from four aspects: structure analysis, authentication, real-time monitoring, and quality assessment. Finally, the review has prospected the development trend and challenges of non-targeted analytical technology. It can assist HMs industry researchers and engineers select non-targeted analytical technology to analyze HMs' quality and authenticity.

10.
Foods ; 11(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36429160

RESUMEN

Medicinal plants have incredibly high economic value, and a practical evaluation of their quality is the key to promoting industry development. The deep learning model based on residual convolutional neural network (ResNet) has the advantage of automatic extraction and the recognition of Fourier transform near-infrared spectroscopy (FT-NIR) features. Models are difficult to understand and interpret because of unknown working mechanisms and decision-making processes. Therefore, in this study, artificial feature extraction methods combine traditional partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) models to understand and compare deep learning models. The results show that the ResNet model has significant advantages over traditional models in feature extraction and recognition. Secondly, preprocessing has a great impact on the feature extraction and feature extraction, and is beneficial for improving model performance. Competitive adaptive reweighted sampling (CARS) and variable importance in projection (VIP) methods screen out more feature variables after preprocessing, but the number of potential variables (LVs) and successive projections algorithm (SPA) methods obtained is fewer. The SPA method only extracts two variables after preprocessing, causing vital information to be lost. The VIP feature of traditional modelling yields the best results among the four methods. After spectral preprocessing, the recognition rates of the PLS-DA and SVM models are up to 90.16% and 88.52%. For the ResNet model, preprocessing is beneficial for extracting and identifying spectral image features. The ResNet model based on synchronous two-dimensional correlation spectra has a recognition accuracy of 100%. This research is beneficial to the application development of the ResNet model in foods, spices, and medicinal plants.

11.
Front Microbiol ; 13: 931967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875572

RESUMEN

Wolfiporia cocos is a widely used traditional Chinese medicine and dietary supplement. Artificial intelligence algorithms use different types of data based on the different strategies to complete multiple tasks such as search and discrimination, which has become a trend to be suitable for solving massive data analysis problems faced in network pharmacology research. In this study, we attempted to screen the potential biomarkers in different parts of W. cocos from the perspective of measurability and effectiveness based on fingerprint, machine learning, and network pharmacology. Based on the conclusions drawn from the results, we noted the following: (1) exploratory analysis results showed that differences between different parts were greater than those between different regions, and the partial least squares discriminant analysis and residual network models were excellent to identify Poria and Poriae cutis based on Fourier transform near-infrared spectroscopy spectra; (2) from the perspective of effectiveness, the results of network pharmacology showed that 11 components such as dehydropachymic acid and 16α-hydroxydehydrotrametenolic acid, and so on had high connectivity in the "component-target-pathway" network and were the main active components. (3) From a measurability perspective, through orthogonal partial least squares discriminant analysis and the variable importance projection > 1, it was confirmed that three components, namely, dehydrotrametenolic acid, poricoic acid A, and pachymic acid, were the main potential biomarkers based on high-performance liquid chromatography. (4) The content of the three components in Poria was significantly higher than that in Poriae cutis. (5) The integrated analysis showed that dehydrotrametenolic acid, poricoic acid A, and pachymic acid were the potential biomarkers for Poria and Poriae cutis. Overall, this approach provided a novel strategy to explore potential biomarkers with an explanation for the clinical application and reasonable development and utilization in Poria and Poriae cutis.

12.
Front Plant Sci ; 13: 818376, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574115

RESUMEN

Panax notoginseng is an important medicinal plant in China, but there are some limitations in the ecological suitability study, such as incomplete investigation of species distribution, single regionalization modeling, and lack of collaborative evaluation of ecological suitability, and quality suitability. In this study, the maximum entropy model was used to analyze the ecological suitability of P. notoginseng under current and future climates. The multi-source chemical information of samples was collected to evaluate the uniformity between quality and ecology. The results showed that the current suitable habitat was mainly in southwest China. In the future climate scenarios, the high suitable habitat will be severely degraded. Modeling based on different regionalization could predict larger suitable habitat areas. The samples in the high suitable habitat had both quality suitability and ecological suitability, and the accumulation of chemical components had different responses to different environmental factors. Two-dimensional correlation spectroscopy combined with deep learning could achieve rapid identification of samples from different suitable habitats. In conclusion, global warming is not conducive to the distribution and spread of P. notoginseng. The high suitable habitat was conducive to the cultivation of high-quality medicinal materials. Actual regionalization modeling had more guiding significance for the selection of suitable habitats in a small area. The multi-regionalization modeling theory proposed in this study could provide a new perspective for the ecological suitability study of similar medicinal plants. The results provided a reference for the introduction and cultivation, and lay the foundation for the scientific and standardized production of high-quality P. notoginseng.

13.
Am J Chin Med ; 50(2): 389-440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300566

RESUMEN

As an endemic species,Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. is widely distributed, such as in China, Korea, Japan, and North America, which have had a dual-purpose resource for medicines and food for over 2000 years. The applications of W. cocos were used to treat diseases including edema, insomnia, spleen deficiency, and vomiting. What's more, there have been wide uses of such edible fungi as a function food or dietary supplement recently. Up until now, 166 kinds of chemical components have been isolated and identified from W. cocos including triterpenes, polysaccharides, sterols, diterpenes, and others. Modern pharmacological studies showed that the components hold a wide range of pharmacological activities both in vitro and in vivo, such as antitumor, anti-inflammatory, antibacterial, anti-oxidant, and antidepressant activities. In addition, present results showed that the mechanisms of pharmacological activities were closely related to chemical structures, molecular signaling paths and the expression of relate proteins for polysaccharides and triterpenes. For further in-depth studies on this fungus based on the recent research status, this review provided some perspectives and systematic summaries of W. cocos in traditional uses, chemical components, pharmacological activities, separation and analysis technologies, and structure-activity relationships.


Asunto(s)
Triterpenos , Wolfiporia , Antioxidantes/metabolismo , Antioxidantes/farmacología , China , Polisacáridos/química , Polisacáridos/farmacología , Triterpenos/química , Wolfiporia/química
14.
Front Plant Sci ; 13: 1009727, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36825249

RESUMEN

Introduction: The cultivation and sale of medicinal plants are some of the main ways to meet the increased market demand for plant-based drugs. Panax notoginseng is a widely used Chinese medicinal material. The growth and accumulation of bioactive constituents mainly depend on a satisfactory growing environment. Additionally, the occurrence of market fraud means that care should be taken when purchasing. Methods: In this study, we report the correlation between saponins and climate factors based on high performance liquid chromatography (HPLC), and evaluate the influence of climate factors on the quality of P. notoginseng. In addition, the synchronous two-dimensional correlation spectroscopy (2D-COS) images of near infrared (NIR) data combined with the deep learning model were applied to traceability of geographic origins of P. notoginseng at two different levels (district and town levels). Results: The results indicated that the contents of saponins in P. notoginseng are negatively related to the annual mean temperature and the temperature annual range. A lower annual mean temperature and temperature annual range are favorable for the content accumulation of saponins. Additionally, high annual precipitation and high humidity are conducive to the content accumulation of Notoginsenoside R1 (NG-R1), Ginsenosides Rg1 (G-Rg1), and Ginsenosides Rb1 (G-Rb1), while Ginsenosides Rd (G-Rd), this is not the case. Regarding geographic origins, classifications at two different levels could be successfully distinguished through synchronous 2D-COS images combined with the residual convolutional neural network (ResNet) model. The model accuracy of the training set, test set, and external validation is achieved at 100%, and the cross-entropy loss function curves are lower. This demonstrated the potential feasibility of the proposed method for P. notoginseng geographic origin traceability, even if the distance between sampling points is small. Discussion: The findings of this study could improve the quality of P. notoginseng, provide a reference for cultivating P. notoginseng in the future and alleviate the occurrence of market fraud.

15.
Front Microbiol ; 13: 1036527, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713220

RESUMEN

Boletes are favored by consumers because of their unique flavor, rich nutrition and delicious taste. However, the different nutritional values of each species lead to obvious price differences, so shoddy products appear on the market, which affects food safety. The aim of this study was to find a rapid and effective method for boletes species identification. In this paper, 1,707 samples of eight boletes species were selected as the research objects. The original Mid-Infrared (MIR) spectroscopy data were adopted for support vector machine (SVM) modeling. The 11,949 spectral images belong to seven data sets such as two-dimensional correlation spectroscopy (2DCOS) and three-dimensional correlation spectroscopy (3DCOS) were used to carry out Alexnet and Residual network (Resnet) modeling, thus we established 15 models for the identification of boletes species. The results show that the SVM method needs to process complex feature data, the time cost is more than 11 times of other models, and the accuracy is not high enough, so it is not recommended to be used in data processing with large sample size. From the perspective of datasets, synchronous 2DCOS and synchronous 3DCOS have the best modeling results, while one-dimensional (1D) MIR Spectrum dataset has the worst modeling results. After comprehensive analysis, the modeling effect of Resnet on the synchronous 2DCOS dataset is the best. Moreover, we use large-screen visualization technology to visually display the sample information of this research and obtain their distribution rules in terms of species and geographical location. This research shows that deep learning combined with 2DCOS and 3DCOS spectral images can effectively and accurately identify boletes species, which provides a reference for the identification of other fields, such as food and Chinese herbal medicine.

16.
Crit Rev Anal Chem ; 52(7): 1606-1623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33840329

RESUMEN

Fraud in herbal medicines (HMs), commonplace throughout human history, is significantly related to medicinal effects with sometimes lethal consequences. Major HMs fraud events seem to occur with a certain regularity, such as substitution by counterfeits, adulteration by addition of inferior production-own materials, adulteration by chemical compounds, and adulteration by addition of foreign matter. The assessment of HMs fraud is in urgent demand to guarantee consumer protection against the four fraudulent activities. In this review, three analysis platforms (targeted, non-targeted, and the combination of non-targeted and targeted analysis) were introduced and summarized. Furthermore, the integration of analysis technology and chemometrics method (e.g., class-modeling, discrimination, and regression method) have also been discussed. Each integration shows different applicability depending on their advantages, drawbacks, and some factors, such as the explicit objective analysis or the nature of four types of HMs fraud. In an attempt to better solve four typical HMs fraud, appropriate analytical strategies are advised and illustrated with several typical studies. The article provides a general workflow of analysis methods that have been used for detection of HMs fraud. All analysis technologies and chemometrics methods applied can conduce to excellent reference value for further exploration of analysis methods in HMs fraud.


Asunto(s)
Quimiometría , Plantas Medicinales , Fraude , Humanos , Tecnología
17.
Front Microbiol ; 12: 771428, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899656

RESUMEN

Boletes are favored by consumers because of their delicious taste and high nutritional value. However, as the storage period increases, their fruiting bodies will grow microorganisms and produce substances harmful to the human body. Therefore, we need to identify the storage period of boletes to ensure their quality. In this article, two-dimensional correlation spectroscopy (2DCOS) images are directly used for deep learning modeling, and the complex spectral data analysis process is transformed into a simple digital image processing problem. We collected 2,018 samples of boletes. After laboratory cleaning, drying, grinding, and tablet compression, their Fourier transform mid-infrared (FT-MIR) spectroscopy data were obtained. Then, we acquired 18,162 spectral images belonging to nine datasets which are synchronous 2DCOS, asynchronous 2DCOS, and integrative 2DCOS (i2DCOS) spectra of 1,750-400, 1,450-1,000, and 1,150-1,000 cm-1 bands. For these data sets, we established nine deep residual convolutional neural network (ResNet) models to identify the storage period of boletes. The result shows that the accuracy with the train set, test set, and external validation set of the synchronous 2DCOS model on the 1,750-400-cm-1 band is 100%, and the loss value is close to zero, so this model is the best. The synchronous 2DCOS model on the 1,150-1,000-cm-1 band comes next, and these two models have high accuracy and generalization ability which can be used to identify the storage period of boletes. The results have certain practical application value and provide a scientific basis for the quality control and market management of bolete mushrooms. In conclusion, our method is novel and extends the application of deep learning in the food field. At the same time, it can be applied to other fields such as agriculture and herbal medicine.

18.
Front Plant Sci ; 12: 759248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691133

RESUMEN

Until now, the over-exploitation of wild resources has increased growing concern over the quality of wild medicinal plants. This led to the necessity of developing a rapid method for the evaluation of wild medicinal plants. In this study, the content of total secoiridoids (gentiopicroside, swertiamarin, and sweroside) of Gentiana rigescens from 37 different regions in southwest China were analyzed by high performance liquid chromatography (HPLC). Furthermore, Fourier transform infrared (FT-IR) was adopted to trace the geographical origin (331 individuals) and predict the content of total secoiridoids (273 individuals). In the traditional FT-IR analysis, only one scatter correction technique could be selected from a series of preprocessing candidates to decrease the impact of the light correcting effect. Nevertheless, different scatter correction techniques may carry complementary information so that using the single scatter correction technique is sub-optimal. Hence, the emerging ensemble approach to preprocessing fusion, sequential preprocessing through orthogonalization (SPORT), was carried out to fuse the complementary information linked to different preprocessing methods. The results suggested that, compared with the best results obtained on the scatter correction modeling, SPORT increased the accuracy of the test set by 12.8% in qualitative analysis and decreased the RMSEP by 66.7% in quantitative analysis.

19.
Front Plant Sci ; 12: 752863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630496

RESUMEN

Medicinal plants have a variety of values and are an important source of new drugs and their lead compounds. They have played an important role in the treatment of cancer, AIDS, COVID-19 and other major and unconquered diseases. However, there are problems such as uneven quality and adulteration. Therefore, it is of great significance to find comprehensive, efficient and modern technology for its identification and evaluation to ensure quality and efficacy. In this study, deep learning, which is superior to conventional identification techniques, was extended to the identification of the part and region of the medicinal plant Paris polyphylla var. yunnanensis from the perspective of spectroscopy. Two pattern recognition models, partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM), were established, and the overall discrimination performance of the three types of models was compared. In addition, we also compared the effects of different sample sizes on the discriminant performance of the models for the first time to explore whether the three models had sample size dependence. The results showed that the deep learning model had absolute superiority in the identification of medicinal plant. It was almost unaffected by factors such as data type and sample size. The overall identification ability was significantly better than the PLS-DA and SVM models. This study verified the superiority of the deep learning from examples, and provided a practical reference for related research on other medicinal plants.

20.
J Anal Methods Chem ; 2021: 5818999, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336360

RESUMEN

Poria originated from the dried sclerotium of Macrohyporia cocos is an edible traditional Chinese medicine with high economic value. Due to the significant difference in quality between wild and cultivated M. cocos, this study aimed to trace the origin of the fungus from the perspectives of wild and cultivation. In addition, there were quite limited studies about data fusion, a potential strategy, employed and discussed in the geographical traceability of M. cocos. Therefore, we traced the origin of M. cocos from the perspectives of wild and cultivation using multiple data fusion approaches. Supervised pattern recognition techniques, like partial least squares discriminant analysis (PLS-DA) and random forest, were employed in this study using. Five types of data fusion involving low-, mid-, and high-level data fusion strategies were performed. Two feature extraction approaches including the selecting variables by a random forest-based method-Boruta algorithm and producing principal components by the dimension reduction technique of principal component analysis-were considered in data fusion. The results indicate the following: (1) The difference between wild and cultivated samples did exist in terms of the content analysis of vital chemical components and fingerprint analysis. (2) Wild samples need data fusion to realize the origin traceability, and the accuracy of the validation set was 95.24%. (3) Boruta outperformed principal component analysis (PCA) in feature extraction. (4) The mid-level Boruta PLS-DA model took full advantage of information synergy and showed the best performance. This study proved that both geographical traceability and optimal identification methods of cultivated and wild samples were different, and data fusion was a potential technique in the geographical identification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA