Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38138520

RESUMEN

Astragali Radix (AR) is a common Chinese medicine and food. This article aims to reveal the active role of AR in treating Type 2 diabetes mellitus (T2DM) and its renal protective mechanism. The hypoglycemic active fraction was screened by α-glucosidase and identified by UPLC-QE-Orbitrap-MS spectrometry. The targets and KEGG pathway were determined through the application of network pharmacology methodology. Molecular docking and molecular dynamics simulation technology were used for virtual verification. Subsequently, a mouse model of T2DM was established, and the blood glucose and renal function indexes of the mice after administration were analyzed to further prove the pharmacodynamic effect and mechanism of AR in the treatment of T2DM. HA was determined as the best hypoglycemic active fraction by the α-glucosidase method, with a total of 23 compounds identified. The main active components, such as calycoside-7-O-ß-D-glucoside, methylnisoline, and formononetin, were revealed by network pharmacology. In addition, the core targets and the pathway have also been determined. Molecular docking and molecular dynamics simulation techniques have verified that components and targets can be well combined. In vivo studies have shown that AR can reduce blood sugar levels in model mice, enhance the anti-inflammatory and antioxidant activities of kidney tissue, and alleviate kidney damage in mice. And it also has regulatory effects on proteins such as RAGE, PI3K, and AKT. AR has a good therapeutic effect on T2DM and can repair disease-induced renal injury by regulating the RAGE/PI3K/Akt signaling pathway. This study provides ideas for the development of new drugs or dietary interventions for the treatment of T2DM.


Asunto(s)
Planta del Astrágalo , Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Animales , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , alfa-Glucosidasas , Riñón , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Medicamentos Herbarios Chinos/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38155401

RESUMEN

BACKGROUND: Asthma is a chronic inflammatory disease of the airways that seriously endangers human health. Belamcanda chinensis (BC), a traditional Chinese medicine, has been used to counteract asthma as it has been shown to possess anti-inflammatory and regulatory immunity properties. OBJECTIVE: The study aimed to investigate the mechanisms of action of BC in the treatment of asthma; a "dose-effect weighted coefficient" network pharmacology method was established to predict potential active compounds. METHODS: Information on the components and content of BC was obtained by UPLC-QEOrbitrap- MS spectrometry. Based on BC content, oral bioavailability, and molecular docking binding energy, dose-effect weighting coefficients were constructed. With the degree greater than average as the index, a protein-protein interaction (PPI) database was used to obtain the core key targets for asthma under dose-effect weighting. GO function and KEGG pathway analyses of the core targets were performed using DAVID software. Finally, MTT and ELISA assays were used to assess the effects of active components on 16HBE cell proliferation. RESULTS: The experimental results using the 16HBE model demonstrated BC to have a potential protective effect on asthma. Network pharmacology showed SYK, AKT1, and ALOX5 to be the main key targets, and Fc epsilon RI as the promising signaling pathway. Eight components, such as tectoridin, mangiferin, luteolin, and isovitexin were the main active compounds, Finally, we analyzed the LPS-induced 16HBE proliferation of each active ingredient. Based on the activity verification study, all five predicted components promoted the proliferation of 16HBE cells. These five compounds can be used as potential quality markers for asthma. CONCLUSION: This study provides a virtual and practical method for the simple and rapid screening of active ingredients in natural products.

3.
Medicine (Baltimore) ; 102(46): e36146, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37986298

RESUMEN

Huangbaichen Sanwei formulation (HBCS) has been reported to have a good hypoglycemic effect, but its pharmacological mechanism of action remains unclear. We used network pharmacology and molecular docking to explore the potential mechanism of action of HBCS against type-2 diabetes mellitus (T2DM). Fifty-five active components from HBCS interfered with T2DM. Twenty-five core targets, such as AKT1, INS, INSR, MAPK1 were identified. Enrichment analyses showed that HBCS was involved mainly including insulin receptor signaling pathway, extracellular region, and insulin-like growth factor receptor binding and other biological processes; common targets had roles in treating T2DM by regulating diabetic cardiomyopathy and insulin resistance. Molecular docking verified that components combined with core targets. HBCS play a part in treating T2DM through multiple components and targets at the molecular level, which lays a theoretical foundation for research using HBCS to treat T2DM. The components, predicted targets, and T2DM targets of HBCS were searched through databases, and common targets were determined. Further screening of the core targets was conducted through the establishment of a protein -protein interaction network. The core targets were analyzed by Gene Ontology (GO) annotation utilizing the DAVID platform. And the enrichment of signaling pathways was explored by employing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Cytoscape 3.9.1 was employed to construct a "TCM-components-core target-pathway" network. Autodock Vina was used to dock molecules to compare the binding activity of active molecules with targets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Mapas de Interacción de Proteínas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
4.
Molecules ; 27(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558193

RESUMEN

The neuroprotective properties of ginsenosides have been found to reverse the neurological damage caused by oxidation in many neurodegenerative diseases. However, the distribution of ginsenosides in different tissues of the main root, which was regarded as the primary medicinal portion in clinical practice was different, the specific parts and specific components against neural oxidative damage were not clear. The present study aims to screen and determine the potential compounds in different parts of the main root in ginseng. Comparison of the protective effects in the main root, phloem and xylem of ginseng on hydrogen peroxide-induced cell death of SH-SY5Y neurons was investigated. UPLC-Q-Exactive-MS/MS was used to quickly and comprehensively characterize the chemical compositions of the active parts. Network pharmacology combined with a molecular docking approach was employed to virtually screen for disease-related targets and potential active compounds. By comparing the changes before and after Content-Effect weighting, the compounds with stronger anti-nerve oxidative damage activity were screened out more accurately. Finally, the activity of the selected monomer components was verified. The results suggested that the phloem of ginseng was the most effective part. There were 19 effective compounds and 14 core targets, and enriched signaling pathway and biological functions were predicted. After Content-Effect weighting, compounds Ginsenosides F1, Ginsenosides Rf, Ginsenosides Rg1 and Ginsenosides Rd were screened out as potential active compounds against neural oxidative damage. The activity verification study indicated that all four predicted ginsenosides were effective in protecting SH-SY5Y cells from oxidative injury. The four compounds can be further investigated as potential lead compounds for neurodegenerative diseases. This also provides a combined virtual and practical method for the simple and rapid screening of active ingredients in natural products.


Asunto(s)
Ginsenósidos , Neuroblastoma , Panax , Humanos , Espectrometría de Masas en Tándem/métodos , Ginsenósidos/química , Panax/química , Simulación del Acoplamiento Molecular , Floema/metabolismo , Estrés Oxidativo , Cromatografía Líquida de Alta Presión/métodos
5.
Theranostics ; 10(23): 10498-10512, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32929362

RESUMEN

Rationale: Current traditional treatment options are frequently ineffective to fight against ovarian cancer due to late diagnosis and high recurrence. Therefore, there is a vital need for the development of novel therapeutic agents. B7H3, an immune checkpoint protein, is highly expressed in various cancers, representing it a promising target for cancer immunotherapy. Although targeting B7H3 by bispecific T cell-engaging antibodies (BiTE) has achieved successes in hematological malignancies during recent years, attempts to use them for the treatment of solid cancers are less favorable, in part due to the heterogeneity of tumors. Sorafenib is an unselective inhibitor of multiple kinases currently being tested in clinical trials for several tumors, including ovarian cancer which showed limited activity and inevitable side effect for ovarian cancer treatment. However, it is able to enhance antitumor immune response, which indicates sorafenib may improve the efficiency of immunotherapy. Methods: We evaluated the expression of B7H3 in ovarian cancer using online database and validated its expression of tumor tissues by immunohistochemistry staining. Then, B7H3 expression and the effects of sorafenib on ovarian cancer cell lines were determined by flow cytometry. In addition, 2D and 3D ovarian cancer models were established to test the combined therapeutic effect in vitro. Finally, the efficiency of B7H3×CD3 BiTE alone and its combination with sorafenib were evaluated both in vitro and in vivo. Results: Our data showed that B7H3 was highly expressed in ovarian cancer compared with normal samples. Treatment with sorafenib inhibited ovarian cancer cell proliferation and induced a noticeable upregulation of B7H3 expression level. Further study suggested that B7H3×CD3 BiTE was effective in mediating T cell killing to cancer cells. Combined treatment of sorafenib and B7H3×CD3 BiTE had synergistic anti-tumor effects in ovarian cancer models. Conclusions: Overall, our study indicates that combination therapy with sorafenib and B7H3×CD3 BiTE may be a new therapeutic option for the further study of preclinical treatment of OC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antígenos B7/antagonistas & inhibidores , Carcinoma Epitelial de Ovario/terapia , Neoplasias Ováricas/terapia , Sorafenib/farmacología , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígenos B7/análisis , Antígenos B7/metabolismo , Complejo CD3/antagonistas & inhibidores , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/mortalidad , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Conjuntos de Datos como Asunto , Sinergismo Farmacológico , Femenino , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Recurrencia Local de Neoplasia , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Ovario/patología , Sorafenib/uso terapéutico , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA