Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653154

RESUMEN

BACKGROUND: Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE: MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS: A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS: Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS: At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.


Asunto(s)
Daño por Reperfusión Miocárdica , Estrés Oxidativo , Humanos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Estrés Oxidativo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Autofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Piroptosis/efectos de los fármacos
2.
Small ; 20(32): e2309940, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38534030

RESUMEN

Ferroptosis is an iron-dependent and lipid peroxides (LPO)-overloaded programmed damage cell death, induced by glutathione (GSH) depletion and glutathione peroxide 4 (GPX4) inactivation. However, the inadequacy of endogenous iron and reactive oxygen species (ROS) restricts the efficacy of ferroptosis. To overcome this obstacle, a near-infrared photo-responsive FeP@PEG NPs is fabricated. Exogenous iron pool can enhance the effect of ferroptosis via the depletion of GSH and further regulate GPX4 inactivation. Generation of ·OH derived from the Fenton reaction is proved by increased accumulation of lipid peroxides. The heat generated by photothermal therapy and ROS generated by photodynamic therapy can enhance cell apoptosis under near-infrared (NIR-808 nm) irradiation, as evidenced by mitochondrial dysfunction and further accumulation of lipid peroxide content. FeP@PEG NPs can significantly inhibit the growth of several types of cancer cells in vitro and in vivo, which is validated by theoretical and experimental results. Meanwhile, FeP@PEG NPs show excellent T2-weighted magnetic resonance imaging (MRI) property. In summary, the FeP-based nanotheranostic platform for enhanced phototherapy/ferroptosis/chemodynamic therapy provides a reliable opportunity for clinical cancer theranostics.


Asunto(s)
Ferroptosis , Fototerapia , Nanomedicina Teranóstica , Humanos , Ferroptosis/efectos de los fármacos , Fototerapia/métodos , Animales , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Hierro/química , Polietilenglicoles/química , Ratones , Fotoquimioterapia/métodos
3.
J Pharm Biomed Anal ; 244: 116114, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38522367

RESUMEN

Qifu decoction (QFD) is an ancient traditional Chinese medicine (TCM) prescription for the treatment of heart failure. However, the mechanisms and active constituents of QFD are poorly understood. In this study, multi-matrices metabolomics (serum, urine, and myocardial mitochondria) based on ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOFMS), were employed for exploring the mechanisms of QFD against heart failure in rat model. Twenty-one, seventeen, and fifteen endogenous metabolite biomarkers associated with heart failure were identified from serum, urine, and myocardial mitochondria datasets, respectively. Fourteen, twelve, and ten of the identified serum, urine, and mitochondria biomarkers were significantly reversed by QFD, respectively. QFD-targeted pathways were involved in TCA cycle, branched chain amino acids metabolism, fatty acid ß-oxidation, sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, tryptophan metabolism, purine metabolism. In addition, QFD-derived constituents in serum were fully analyzed by UHPLC-Q-TOFMS and SUS-plot, and 24 QFD-derived components were identified in serum. Then, the correlation analysis between the QFD-reversed serum biomarkers and QFD-derived constituents in serum was employed to dissect the active constituents of QFD. It was found that eight prototypical components and three metabolites were highly correlated with efficacy and could serve as the active constituents of QFD against heart failure. Finally, neoline and calycosin, which highly correlated with branched-chain amino acid metabolism and fatty acid ß-oxidation, were selected to validate in Na2S2O4-induced cell model. It was found that neoline and calycosin provided a significant protective effect against Na2S2O4-induced cell death in a low dose-dependent manner and increased the expressions of the pathway-related protein CPT1B and BCAT2 in the cell model. In conclusions, these findings provided light on the mechanisms and active constituents of QFD against heart failure. Neoline and calycosin could be selected as potential quality-markers of QFD against heart failure.


Asunto(s)
Biomarcadores , Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Metabolómica , Ratas Sprague-Dawley , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Animales , Metabolómica/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Ratas , Cromatografía Líquida de Alta Presión/métodos , Masculino , Biomarcadores/sangre , Medicina Tradicional China/métodos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Modelos Animales de Enfermedad , Espectrometría de Masas/métodos
4.
Cytokine Growth Factor Rev ; 73: 173-184, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634980

RESUMEN

Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles secreted from almost all types of cells including bacteria, mammals and plants, and are presumed to be mediators of intercellular communication. Bacterial extracellular vesicles (BEVs) are nanoparticles with diverse diameters, ranging from 20 to 400 nm. BEVs are composed of soluble microbial metabolites, including nucleic acid, proteins, lipoglycans, and short-chain fatty acids (SCFAs). In addition, EVs may contain quorum sensing peptides that are endowed with the ability to protect bacteria against bacteriophages, form and maintain bacterial communities, and modulate the host immune system. BEVs are potentially promising therapeutic modalities for use in vaccine development, cancer immunotherapy regimens, and drug delivery cargos. Plant-derived EVs (PEVs), such as EVs derived from herbal medicines, can be absorbed by the gut microbiota and influence the composition and homeostasis of gut microbiota. This review highlights the roles of BEVs and PEVs in bacterial and plant physiology and discusses crosstalk among gut bacteria, host metabolism and herbal medicine. In summary, EVs represent crucial communication messengers in the gut microbiota, with potential therapeutic value in the delivery of herbal medicines.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Humanos , Animales , Comunicación Celular , Homeostasis , Extractos Vegetales , Mamíferos
5.
Front Nutr ; 10: 1172587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426181

RESUMEN

Background: Previous studies have suggested a potential association between nutrients and cerebral small vessel disease (CSVD), but this association has not been fully addressed. Object: We intended to clarify the causal associations between four categories of essential nutrients (amino acids, polyunsaturated fatty acids, minerals and vitamins) and two acute manifestations of CSVD (intracerebral hemorrhage and small vessel stroke) using two-sample Mendelian randomization (MR) analysis. Method: We obtained European-based large-scale genome-wide association studies (GWASs) related to CSVD (6,255 cases and 233,058 controls) and nutrient concentrations. Causality evaluation mainly included the results of the inverse variance-weighted (IVW) method. The simple median method, the weighted median method and the MR-Egger method were adopted for sensitivity analyses. Results: For ICH or SVS, increased levels of phenylalanine (OR = 1.188, p < 0.001) and dihomo-gamma-linolenic acid (DGLA) (OR = 1.153, p = 0.001) showed risk effects, while docosapentaenoic acid (DPA) (OR = 0.501, p < 0.001), zinc (OR = 0.919, p < 0.001), and arachidonic acid (OR = 0.966, p = 0.007) showed protective effects. For lobar hemorrhage or SVS, AA (OR = 0.978, p < 0.001), zinc (OR = 0.918, p < 0.001), and retinol (OR = 0.753, p < 0.001) showed risk effects; DPA (OR = 0.682, p = 0.022), gamma-linolenic acid (OR = 0.120, p = 0.033) and 25(OH)D (OR = 0.874, p = 0.040) showed protective effects. For nonlobar hemorrhage or SVS, DGLA (OR = 1.088, p < 0.001) and phenylalanine (OR = 1.175, p = 0.001) showed risk effects. Conclusion: Our study analyzed the effect of nutrients on CSVD risk from a genetic perspective, with implications for CSVD prevention through nutrient supplementation.

6.
Plant Physiol Biochem ; 196: 982-992, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36893613

RESUMEN

Nano-selenium (nano-Se) and melatonin (MT) applications confirmed to boost plant growth and resistance. The mechanism of various ratios of nano-Se and MT foliar application postpone the senescence of fresh cut carnation flowers and improve vase life remains unclear. In this study, a combined effect with nano-Se (nano-Se5, 5 mg/L) and MT(MT1, 1 mg/L) was preferable to the control, nano-Se, and MT treatment alone when it came to delaying flower senescence. They enhance the antioxidant ability of carnation flowers by lowering MDA and H2O2 levels, raising SOD and POD concentrations, and lowering procyanidins biosynthesis (catechins and epicatechin). Inducing the biosynthesis of hormonal compounds (salicylic acid, jasmonic acid, and abscisic acid), their combination also boosted the growth of carnations. Biofortification with nano-Se and MT substantially increased the amounts of key lignin biosynthesis pathway metabolites (L-phenylalanine, p-hydroxycinnamic acid, p-coumaric acid, perillyl alcohol, p-Coumaryl alcohol, and cinnamic acid), which may increase stem cellular thickness and facilitate water absorption and transmission. The study hypothesizes that nano-Se and MT synergistic applications act as a new efficient non-toxic preservative to extend the vase life and improve the decorative value of carnations.


Asunto(s)
Dianthus , Melatonina , Selenio , Melatonina/farmacología , Flores/metabolismo , Peróxido de Hidrógeno , Antioxidantes/metabolismo
7.
Chem Biodivers ; 20(3): e202200784, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36717756

RESUMEN

Potentilla anserina L., a well-known perennial herb, is widely used in traditional Tibetan medicine and used as a delicious food in humans. The present investigation reports on the activity of P. anserina phenols (PAP) in regulating glycolipid metabolism in 3T3-L1 adipocytes. Insulin sensitivity tests showed that PAP improved insulin-stimulated glucose uptake by promoting the phosphorylation of serine/threonine kinase Akt. Moreover, an assay involving the differentiation of 3T3-L1 preadipocytes demonstrated that PAP also decreased the accumulation of lipid droplets by suppressing the expression of adipokines during the differentiation process. In addition, the underlying mechanism from the aspects of energy metabolism and oxidative stress is also discussed. The improvement in energy metabolism was supported by an increase in mitochondrial membrane potential (MMP) and intracellular ATP. Amelioration of oxidative stress was supported by decreased levels of intracellular reactive oxygen species (ROS). In summary, our findings suggest that PAP can ameliorate the disorder of glycolipid metabolism in insulin resistant 3T3-L1 adipocytes by improving energy metabolism and oxidative stress and might be an attractive candidate for the treatment of diabetes.


Asunto(s)
Resistencia a la Insulina , Fenoles , Potentilla , Animales , Ratones , Células 3T3-L1/efectos de los fármacos , Adipocitos/efectos de los fármacos , Glucosa/metabolismo , Glucolípidos , Insulina/metabolismo , Potentilla/química , Potentilla/metabolismo , Fenoles/química , Fenoles/farmacología
8.
J Nanobiotechnology ; 20(1): 523, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496437

RESUMEN

Selenium (Se) maintains soil-plant homeostasis in the rhizosphere and regulates signaling molecules to mitigate cadmium (Cd) toxicity. However, there has been no systematic investigation of the effects of nano-selenium (nano-Se) on the regulation of non-target metabolites and nutritional components in pepper plants under Cd stress. This study investigated the effects of Cd-contaminated soil stress and nano-Se (1, 5, and 20 mg/L) on the metabolic mechanism, fruit nutritional quality, and volatile organic compounds (VOCs) composition of pepper plants. The screening of differential metabolites in roots and fruit showed that most were involved in amino acid metabolism and capsaicin production. Amino acids in roots (Pro, Trp, Arg, and Gln) and fruits (Phe, Glu, Pro, Arg, Trp, and Gln) were dramatically elevated by nano-Se biofortification. The expression of genes of the phenylpropane-branched fatty acid pathway (BCAT, Fat, AT3, HCT, and Kas) was induced by nano-Se (5 mg/L), increasing the levels of capsaicin (29.6%), nordihydrocapsaicin (44.2%), and dihydrocapsaicin (45.3%). VOCs (amyl alcohol, linalool oxide, E-2-heptaldehyde, 2-hexenal, ethyl crotonate, and 2-butanone) related to crop resistance and quality were markedly increased in correspondence with the nano-Se concentration. Therefore, nano-Se can improve the health of pepper plants by regulating the capsaicin metabolic pathway and modulating both amino acid and VOC contents.


Asunto(s)
Selenio , Contaminantes del Suelo , Cadmio/química , Selenio/química , Valor Nutritivo , Aminoácidos
9.
Comput Biol Med ; 151(Pt A): 106293, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36399857

RESUMEN

BACKGROUND: Mahuang FuziXixin Decoction (MFXD) is a classic Chinese herbal formula for the treatment of lung cancer. However, its mechanisms of action are unclear. In present study, network pharmacology and molecular docking technology were employed to investigate the molecular mechanism and substance basis of MFXD for the treatment of lung cancer. METHOD: The active compounds and corresponding targets of MFXD were collected through the TCMSP database. OMIM and GeneCards databases were applied to filter the targets of lung cancer. The protein-protein interaction (PPI) were acquired through the STRING platform. Metascape and the Bioinformatics server were used for the visualization of GO and KEGG analysis. The tissue and organ distribution of targets was evaluated based on the BioGPS database. The binding affinity between potential targets and active compounds was evaluated by molecular docking. RESULT: A total of 51 active compounds and 118 targets of MFXD were collected. The target with a higher degree were identified through the PPI network, namely AR, RELA, NCOA1, EGFR, FOS, CCND1, ESR1 and HSP90AA1. GO and KEGG analysis suggested that MFXD treatment of lung cancer mainly involves hormone and response to inorganic substance, transcription regular complex, transcription factor binding and Pathways in cancer. Experimental validation showed that MFXD treatment inhibited the proliferation of NSCLC cells through downregulation the expression of EGFR, HIF1A, NCOA1 and RELA. Moreover, molecular docking revealed that hydrogen bond and hydrophobic interaction contribute to the binding of the compounds to targets. CONCLUSION: Our findings comprehensively elucidated the actives, potential targets, and molecular mechanisms of MFXD against lung cancer, providing a promising strategy for the scientific basis and therapeutic mechanism of traditional Chinese medicine prescriptions for the treatment of the disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB
10.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232809

RESUMEN

Evodiamine (EVO) and rutaecarpine (RUT) are the main active compounds of the traditional Chinese medicinal herb Evodia rutaecarpa. Here, we fully optimized the molecular geometries of EVO and RUT at the B3LYP/6-311++G (d, p) level of density functional theory. The natural population analysis (NPA) charges, frontier molecular orbitals, molecular electrostatic potentials, and the chemical reactivity descriptors for EVO and RUT were also investigated. Furthermore, molecular docking, molecular dynamics simulations, and the analysis of the binding free energies of EVO and RUT were carried out against the anticancer target topoisomerase 1 (TOP1) to clarify their anticancer mechanisms. The docking results indicated that they could inhibit TOP1 by intercalating into the cleaved DNA-binding site to form a TOP1−DNA−ligand ternary complex, suggesting that they may be potential TOP1 inhibitors. Molecular dynamics (MD) simulations evaluated the binding stability of the TOP1−DNA−ligand ternary complex. The calculation of binding free energy showed that the binding ability of EVO with TOP1 was stronger than that of RUT. These results elucidated the structure−activity relationship and the antitumor mechanism of EVO and RUT at the molecular level. It is suggested that EVO and RUT may be potential compounds for the development of new anticancer drugs.


Asunto(s)
Antineoplásicos , Evodia , Antineoplásicos/farmacología , Evodia/química , Alcaloides Indólicos , Ligandos , Simulación del Acoplamiento Molecular , Quinazolinas , Quinazolinonas
11.
Chin Herb Med ; 14(1): 79-89, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36120121

RESUMEN

Objective: He-Wei Granule (HWKL) is a modern product derived from the modified formulation of traditional Chinese medicine Banxia Xiexin Decoction (BXD), which remarkedly enhanced the anti-proliferation activity of cyclophosphamide (CTX) on HepG2 and SGC-7901 cell lines in vitro in our previous research. The aim of the study was to investigate the synergistic effects of HWKL and CTX using a transplanted H22 hepatocellular carcinoma mouse model. Methods: The CTX-toxic-reducing efficacy of HWKL was evaluated by hematology indexes, organ indexes and marrow DNA detection. To investigate the underlying mechanisms, histopathology test, immunohistochemistry test and TUNEL staining were conducted. The efficacy of HWKL on the micro-vessel density (MVD) in tumor tissue was also evaluated by measuring CD34 level. Results: High dose HWKL (6.75 g/kg) markedly attenuated CTX-induced hepatotoxicity and myelosuppression while significantly enhanced CTX anticancer efficacy in vivo. Further mechanism investigation suggested that high dose HWKL significantly increased cleaved Caspase 3 level and promoted apoptosis in tumor tissue by up-regulating Bax expression and down-regulating Bcl-2 and FasL expressions. Compared with CTX alone group, the decrease in LC-3B and Beclin 1 levels suggested that the autophagy in H22 carcinoma was significantly inhibited with addition of high dose HWKL. ELISA assay results indicated that the autophagy inhibition was achieved by decreasing p53 expression, blocking PI3K/AKT/mTOR pathway and recovering Th1/Th2 cytokine balance. In addition, CD34 and EGFR immunohistochemistry assay suggest that high dose HWKL could significantly decrease micro-vessel density (MVD) and inhibit angiogenesis in H22 carcinoma. Conclusion: It can be concluded that high-dose HWKL enhanced CTX efficacy by promoting apoptosis, inhibiting autophagy and angiogenesis in tumor tissue while significantly alleviated CTX-induced toxicity, and could be applied along with CTX in clinical treatment as a supplement agent.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(9): 1047-1052, 2022.
Artículo en Chino | MEDLINE | ID: mdl-36111725

RESUMEN

A girl, aged 11 years, was admitted due to recurrent rash on the whole body and mucosa for 10 years, and typical rash was erythema at the perioral region, hand-foot joints, vulva, and perianal region, with blisters, erosions, and ulcers on the erythema. The girl was improved after zinc supplementation. Her younger brother had similar rash and medical history. The histopathological examination showed epidermal parakeratosis with mild hyperkeratosis, severe spongiform edema of the stratum corneum, significant proliferation of acanthocytes, and vacuolation of keratinocytes. The genetic testing revealed that both the girl and her younger brother had a homozygous mutation of c.1456(exon9)delG in the SLC39A4 gene, and thus the girl was diagnosed with acrodermatitis enteropathica. It is concluded that for children with recurrent rash on the limbs and at the perioral region, genetic testing should be performed as early as possible to make a confirmed diagnosis, and a sufficient dose of zinc supplementation should be given, while the levels of trace elements such as blood zinc should be regularly monitored.


Asunto(s)
Acrodermatitis , Proteínas de Transporte de Catión , Exantema , Oligoelementos , Acrodermatitis/diagnóstico , Acrodermatitis/genética , Acrodermatitis/patología , Proteínas de Transporte de Catión/genética , Niño , Exantema/etiología , Femenino , Homocigoto , Humanos , Masculino , Recurrencia , Zinc
13.
Phytochemistry ; 204: 113446, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152725

RESUMEN

The genus Datura has been used as an important traditional medicine in China, as well as in other countries worldwide. This review summarizes the latest progress and perspective of the genus Datura, from the aspects of botany, traditional uses, phytochemistry, pharmacology, and toxicology. Up to May 2022, literatures were collected from online scientific databases, including Google Scholar, PubMed, SciFinder, CNKI, ACS, and Web of Science, and information was also obtained from "Flora Republicae Populairs Sinicae", Chinese Pharmacopoeia, Chinese herbal classic books, and Ph.D. and M. Sc. dissertations. Studies on chemical constituents, pharmacological activities, and toxicity are mainly focused on D. metel, D. stramonium, and D. inoxia. Furthermore, 496 compounds have been discovered from the genus Datura, including withanolides, alkaloids, flavonoids, terpenoids, phenylpropanoids, steroids, amino acids, aromatics, and aliphatics. Among them, withanolides and alkaloids are two main active constituents. Pharmacological activities of extracts and compounds have been studied from the aspects of antitumor, antiinflammation, antioxidant, antimicrobial, antispasmodic, anticoagulant, analgesic, hypoglycemic and xanthine oxidase inhibitory activities, as well as the effects on central nervous system and immune system. Modern pharmacological studies have provided more clues to elucidate the traditional usages. The toxicity of the genus Datura is noteworthy, especially the potential toxicity on organs. This review would provide a comprehensive and constructive overview for new drug development and utilization of the genus Datura.

14.
Phytother Res ; 36(6): 2272-2299, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35583806

RESUMEN

Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.


Asunto(s)
Cornus , Iridoides , Transducción de Señal , Cornus/química , Humanos , Iridoides/farmacocinética , Iridoides/farmacología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología
15.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2148-2157, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35531730

RESUMEN

This study aims to develop an HPLC-DAD method for simultaneous determination of 11 components(6 phenolic acids and 5 iridoids) in Lonicera japonica flowers(LjF) and leaves(LjL), and compare the content differences of LjF at different development stages, LjL at different maturity levels, and between LjF and LjL. One-way ANOVA, principal component analysis(PCA), and orthogonal partial least-squares discriminant analysis(OPLS-DA) were employed to compare the content of the 11 components. The content of total phenolic acids, total iridoid glycosides, and total 11 components in LjF showed an overall downward trend with the development of flowers. The content of total phenolic acids, total iridoid glycosides, and total 11 components in young leaves were higher than those in mature leaves. The results of PCA showed that the samples at different flowering stages had distinguishable differences in component content. The VIP value of OPLS-DA showed that isochlorogenic acid A, chlorogenic acid, and secologanic acid were the main differential components of LjF at different development stages or LjL with different maturity levels. LjF and LjL have certain similarities in chemical composition while significant differences in component content. The content of total phenolic acids in young leaves was significantly higher than that in LjF at various development stages. The content of total iridoid glycosides in young leaves was similar to that in LjF before white flower bud stage. The total content of 11 components in young leaves was significantly higher than that in LjF at green flower bud stage, before and during completely white flower bud stage. LjL have great potential for development. Follow-up research on the pharmacodynamic equivalence of LjF and LjL(especially young leaves) should be carried out to speed up the development and application of LjL.


Asunto(s)
Lonicera , Cromatografía Líquida de Alta Presión , Flores/química , Glicósidos Iridoides/análisis , Lonicera/química , Hojas de la Planta/química
16.
Gut ; 71(4): 734-745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34006584

RESUMEN

OBJECTIVE: Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN: Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS: We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION: Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Panax , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Muerte Celular , Microbioma Gastrointestinal/fisiología , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Quinurenina/farmacología , Ligandos , Neoplasias Pulmonares/terapia , Ratones , Panax/metabolismo , Polisacáridos/farmacología , Triptófano/farmacología
17.
Oxid Med Cell Longev ; 2021: 7807046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707780

RESUMEN

In this study, a chemical investigation on the fruits of Livistona chinensis (FLC) led to the isolation and identification of 45 polyphenols and 5 alkaloids, including two new compounds (Livischinol (1) and Livischinine A (46)), an undescribed compound (47) and 47 known compounds. FLC was predicted with novel potential antidiabetic function by collecting and analyzing the potential targets of the ingredients. Compound 32 exhibited significant α-glucosidase inhibitory activity (IC50 = 5.71 µM) and 1, 6, and 44 showed the PTP1B inhibitory activity with IC50 values of 9.41-22.19 µM, while that of oleanolic acid was 28.58 µM. The competitive inhibitors of PTP1B (compounds 1 and 44) formed strong binding affinity, with catalytic active sites, proved by kinetic analysis, fluorescence spectra measurements, and computational simulations, and stimulated glucose uptake in the insulin-resistant HepG2 cells at the dose of 50 µM. In addition, FLC was rich in antioxidant and anti-inflammatory bioactive compounds so that they could be developed as nutraceuticals against diabetes.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Arecaceae , Frutas , Inhibidores de Glicósido Hidrolasas/farmacología , Farmacología en Red , Extractos Vegetales/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Arecaceae/química , Frutas/química , Glucosa/metabolismo , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Humanos , Resistencia a la Insulina , Cinética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Simulación de Dinámica Molecular , Extractos Vegetales/aislamiento & purificación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Células RAW 264.7
18.
J Food Sci ; 86(10): 4365-4375, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34431095

RESUMEN

Anthocyanins are a group of flavonoids widely used as natural pigments and in functional foods. However, the sensitivity of anthocyanins to environment factors limits their utilization. The present study examined the stabilizing effects of polyphenol extracts from raspberry, sea-buckthorn, Lonicera edulis, and blackcurrant on Lycium ruthenicum Murr (LRM)-derived anthocyanins. After light and heat exposure, contents of total anthocyanins and the monomers were detected with the pH differential method and the HPLC. Remarkably, polyphenol extracts from raspberry, Lonicera edulis and blackcurrant extended the half-lives of anthocyanins, while the effect of the sea-buckthorn extracts was negligible. Noticeably, petunidin-3-O-[6-O-(4-O-trans-p-coumaroyl-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside]-5-O-[beta-D-glucopyranoside], the major component of LRM-derived anthocyanins, exhibited a dramatic increase in half-life with the presence of polyphenol extracts from raspberry, Lonicera edulis, and blackcurrant. In summary, our findings suggest the polyphenol extracts could be developed into copigments for stabilization of anthocyanins.


Asunto(s)
Antocianinas , Lycium , Polifenoles , Antocianinas/análisis , Antocianinas/química , Cromatografía Líquida de Alta Presión , Lycium/química , Extractos Vegetales/farmacología , Polifenoles/química
19.
Eur J Pharmacol ; 909: 174405, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34384755

RESUMEN

Cornus Officinalis (Cornus), the dried pulp of mature Cornus, is used to treat liver diseases. However, the pharmacological mechanism of Cornus in the treatment of hepatocellular carcinoma (HCC) has not been systematically studied. The chemical compounds and the bioactive chemical compounds of Cornus were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Gene Cards database was used to explore the targets in liver cancer pathogenesis. The disease-drug Venn diagram was constructed using the VENN 2.1 and the STRING database was used to analyze protein-protein Interaction Network (PPI). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the R package. Molecular docking was performed using Discovery Studio were assessed using Pymol and Discovery Studio 2016. Cell survival of BEL-7404 cells treated by Hydroxygenkwanin (HGK) were valued through CCK-8 assay. Expressions of caspase-3 and cleaved PARP was detected through Western blot. Pharmacological network diagrams of the Cornus compound-target network and HCC-related target network were successfully constructed. A total of 20 active compounds, 1841 predicted biological targets of Cornus, and 7100 HCC-related targets were identified. 37 target genes between Cornus and HCC were screened trough the network pharmacology. Molecular docking studies suggested that HGK has the highest affinity with caspase-3. HGK could induce apoptosis of HCC cells and significantly activate the caspase-3 protease activity in BEL-7404. This study systematically elaborated the mechanism of Cornus in the treatment of HCC and provided a new perspective to exploit Antineoplastic from Cornus.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Cornus/química , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética
20.
Acta Pharmacol Sin ; 42(5): 726-734, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32855531

RESUMEN

The inhalation of particulate matter (PM) is closely related to respiratory damage, including acute lung injury (ALI), characterized by inflammatory fluid edema and disturbed alveolar-capillary permeability. Ruscogenin (RUS), the main active ingredient in the traditional Chinese medicine Ophiopogonis japonicus, has been found to exhibit anti-inflammatory activity and rescue LPS-induced ALI. In this study, we investigated whether and how RUS exerted therapeutic effects on PM-induced ALI. RUS (0.1, 0.3, 1 mg·kg-1·d-1) was orally administered to mice prior to or after intratracheal instillation of PM suspension (50 mg/kg). We showed that RUS administration either prior to or after PM challenge significantly attenuated PM-induced pathological injury, lung edema, vascular leakage and VE-cadherin expression in lung tissue. RUS administration significantly decreased the levels of cytokines IL-6 and IL-1ß, as well as the levels of NO and MPO in both bronchoalveolar lavage fluid (BALF) and serum. RUS administration dose-dependently suppressed the phosphorylation of NF-κB p65 and the expression of TLR4 and MyD88 in lung tissue. Furthermore, TLR4 knockout partly diminished PM-induced lung injury, and abolished the protective effects of RUS in PM-instilled mice. In conclusion, RUS effectively alleviates PM-induced ALI probably by inhibition of vascular leakage and TLR4/MyD88 signaling. TLR4 might be crucial for PM to initiate pulmonary lesion and for RUS to exert efficacy against PM-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Endotelio/efectos de los fármacos , Pulmón/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Espirostanos/uso terapéutico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/patología , Animales , Técnicas de Inactivación de Genes , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/patología , Pulmón/patología , Masculino , Ratones Endogámicos ICR , Factor 88 de Diferenciación Mieloide/metabolismo , Material Particulado , Sustancias Protectoras/uso terapéutico , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA