Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35966754

RESUMEN

Background: Back muscle injury is the most common illness involved in aged people. Muscular satellite cells, playing a key role in the muscle repairing process, are gradually losing their regenerative ability with aging, which attenuates the injured muscle repairing process. Electroacupuncture at Weizhong acupoint has been widely used in the treatment of young and aged patients with back muscle damage. Its efficacy has been proven by a randomized double-blind placebo clinical trial. However, the rehabilitation mechanisms are largely unknown. This study will explore the possible mechanisms associated with electroacupuncture at the Weizhong acupoint (BL 40) promoting muscle repairing ability. Method: A total of 58 male and female Sprague-Dawley rats were divided into a younger group (4-month-old) and an aged group (16-month-old), younger and aged rats were further divided as a sham, injured, injured rats treated with electroacupuncture at Weizhong point or treated with Non-Weizhong point groups. The back muscle injury model was produced in rats as a previously described method with modification. Furthermore, Weizhong acupoints underwent electroacupuncture treatment with 15 V magnitude, 2 Hz/10 Hz frequency density, 1.0 mA current intensity, and 10 min each day for 10 consecutive days using HANS's electroacupuncture apparatus. After the last treatment, the paravertebral muscles and serum of all animals were undergone histological, immunohistochemistry, and flow cytometry analysis. Serum levels of Creatine Kinase (CK) and proinflammatory cytokine, interleukin 6 (IL-6), were measured separately by using ELISA kit. Results: Electroacupuncture of Weizhong (BL 40) acupoints significantly attenuated back muscle damage in both young and aged rats, increasing PAX7 (a marker of muscle satellite cells) and MYOD (major marker of myoblasts) cells, simultaneously, reducing serum proinflammatory cytokines, IL-6, and downregulation of p38 MAPK signaling in aged muscular satellite cells. Conclusion: Our studies suggest that electroacupuncture of Weizhong (BL 40) acupoints can restore aged back muscular satellite cells and their regeneration capacity. These suggested electroacupuncture may be a potential means of promoting rehabilitation for muscular injury in aged patients.

2.
Molecules ; 26(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885694

RESUMEN

Volatile composition is an important feature that determines flavor, which actively affects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four chrysanthemum teas were distinct from each other based on their volatile compounds. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in chrysanthemum tea plants and products.


Asunto(s)
Chrysanthemum/química , Té/química , Tés de Hierbas/análisis , Compuestos Orgánicos Volátiles/química , Camellia sinensis/química , Aromatizantes/química , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Movilidad Iónica , Análisis de Componente Principal , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/aislamiento & purificación
3.
Arch Insect Biochem Physiol ; 101(2): e21550, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30945781

RESUMEN

Black nightshade (Solanum nigrum, S. nigrum L.) and red nightshade ( Solanum villosum, S. villosum Mill.) are medicinal plants from the Solanaceae family that synthesize glycoalkaloids and other secondary metabolites. To recognize the potential insecticide activity of these compounds, leaf extracts (containing glycoalkaloid and methanol fractions) were tested for enzyme inhibition, antifeedant activity and toxicity. For in-vitro glutathione S-transferase (GST) inhibition activity, we used insecticide-resistant Colorado potato beetle, Leptinotarsa decemlineata ( L. decemlineata; Say) midgut and fat-body homogenate. In-vivo toxicity and the antifeedant activity were performed using larval bioassays. The methanol extracts had greater GST inhibitory activity compared to the glycoalkaloids, as well as greater 2nd instar larvae mortality and antifeedant activity. Furthermore, the green leaf volatile compound, cis-hex-3-enyl acetate, at the concentration of 5 ppm, caused 50% mortality of 2nd instar larvae. Our findings suggest the potential usefulness of S. nigrum and S. villosum extracts to control L. decemlineata.


Asunto(s)
Escarabajos , Insecticidas , Extractos Vegetales , Solanum/química , Acetatos/toxicidad , Animales , Escarabajos/enzimología , Escarabajos/crecimiento & desarrollo , Cuerpo Adiposo/efectos de los fármacos , Conducta Alimentaria , Glutatión Transferasa/antagonistas & inhibidores , Larva , Solanum nigrum/química
4.
Mol Genet Genomics ; 294(2): 409-416, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30483896

RESUMEN

Thiamine pyrophosphokinase (TPK) converts thiamine (vitamin B1) into thiamine pyrophosphate (TPP), an essential cofactor for many important enzymes. TPK1 mutations lead to a rare disorder: episodic encephalopathy type thiamine metabolism dysfunction. Yet, the molecular mechanism of the disease is not entirely clear. Here we report an individual case of episodic encephalopathy, with familial history carrying a novel homozygous TPK1 mutation (p.L28S). The L28S mutation leads to reduced enzymatic activity, both in vitro and in vivo, without impairing thiamine binding and protein stability. Thiamine supplementation averted encephalopathic episodes and restored the patient's developmental progression. Biochemical characterization of reported TPK1 missense mutations suggested reduced thiamine binding as a new disease mechanism. Importantly, many disease mutants are directly or indirectly involved in thiamine binding. Thus, our study provided a novel rationale for thiamine supplementation, so far the major therapeutic intervention in TPK deficiency.


Asunto(s)
Encefalopatías/genética , Tiamina Pirofosfoquinasa/deficiencia , Tiamina Pirofosfoquinasa/genética , Tiamina/genética , Secuencia de Aminoácidos/genética , Encefalopatías/fisiopatología , Preescolar , China , Femenino , Homocigoto , Humanos , Masculino , Mutación Missense/genética , Linaje , Unión Proteica , Estabilidad Proteica , Tiamina Pirofosfoquinasa/química , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
5.
Front Microbiol ; 8: 2182, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163454

RESUMEN

Low-molecular-weight chitosan (LC) promoted growth in weaned piglets as an alternative to feed-grade antibiotics. To investigate the influence of LC supplementation on piglets' gut microbiome and compare the differences in community composition between LC and antibiotics with ZnO addition, we assessed the cecal microbial community by 16S rRNA gene sequencing with three treatments consisting of basal diet (CTR group), basal diet with low-molecular-weight chitosan (LC group), and basal diet with antibiotic and ZnO (AZ group). LC decreased pH more than AZ did in the cecum (both compared to CTR). Beta diversity analysis showed that community structure was distinctly different among the CTR, LC, and AZ treatments, indicating that either LC or AZ treatment modulated the piglet microbiota. Bacteroidetes, Firmicutes, and Proteobacteria dominated the community [>98% of operational taxonomic units (OTUs)] in piglet cecal contents. Compared to CTR, both LC, and AZ increased the relative abundance of Bacteroidetes while they decreased the count of Firmicutes and AZ decreased the population of Proteobacteria. In CTR the top four abundant genera were Prevotella (~10.4%), Succinivibrio (~6.2%), Lactobacillus (~5.6%), and Anaerovibrio (5.4%). Both LC and AZ increased the relative abundance of Prevotella but decreased the ratio of Lactobacillus when they compared with CTR. Moreover, LC increased the relative abundance of Succinivibrio and Anaerovibrio while AZ decreased them. The microbial function prediction showed LC enriched more pathways in the metabolism of cofactors and vitamins than CTR or AZ did. LC may potentially function as an alternative to feed-grade antibiotics in weaned piglets due to its beneficial regulation of the intestinal microbiome.

6.
Arch Insect Biochem Physiol ; 87(4): 234-49, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25270601

RESUMEN

Insecticide synergists biochemically inhibit insect metabolic enzyme activity and are used both to increase the effectiveness of insecticides and as a diagnostic tool for resistance mechanisms. Considerable attention has been focused on identifying new synergists from phytochemicals with recognized biological activities, specifically enzyme inhibition. Jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP.), balsam fir (Abies balsamea (L.) Mill.), and tamarack larch (Larix laricina (Du Roi) Koch) have been used by native Canadians as traditional medicine, specifically for the anti-inflammatory and antioxidant properties based on enzyme inhibitory activity. To identify the potential allelochemicals with synergistic activity, ethanol crude extracts and methanol/water fractions were separated by Sephadex LH-20 chromatographic column and tested for in vitro glutathione S-transferase (GST) inhibition activity using insecticide-resistant Colorado potato beetle, Leptinotarsa decemlineata (Say) midgut and fat-body homogenate. The fractions showing similar activity were combined and analyzed by ultra pressure liquid chromatography-mass spectrometry. A lignan, (+)-lariciresinol 9'-p-coumarate, was identified from P. mariana cone extracts, and L. laricina and A. balsamea bark extracts. A flavonoid, taxifolin, was identified from P. mariana and P. banksiana cone extracts and L. laricina bark extracts. Both compounds inhibit GST activity with taxifolin showing greater activity compared to (+)-lariciresinol 9'-p-coumarate and the standard GST inhibitor, diethyl maleate. The results suggested that these compounds can be considered as potential new insecticide synergists.


Asunto(s)
Escarabajos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Sinergistas de Plaguicidas , Extractos Vegetales/farmacología , Tracheophyta/química , Animales , Escarabajos/enzimología , Inhibidores Enzimáticos/química , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/enzimología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/enzimología , Glutatión Transferasa/metabolismo , Resistencia a los Insecticidas , Insecticidas/farmacología , Larva/efectos de los fármacos , Lignanos/farmacología , Extractos Vegetales/química , Quercetina/análogos & derivados , Quercetina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA