Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Asian J Pharm Sci ; 19(2): 100908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623486

RESUMEN

The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.

2.
Chin J Integr Med ; 30(7): 608-615, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386252

RESUMEN

OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.


Asunto(s)
Medicamentos Herbarios Chinos , Fibrosis , Daño por Reperfusión Miocárdica , Miocardio , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratones Endogámicos C57BL , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transición Endotelial-Mesenquimatosa
3.
J Biomol Struct Dyn ; : 1-20, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38344924

RESUMEN

Psoriasis brings economic and mental burdens to patients, the exact etiology and pathogenesis of psoriasis are still unclear. Compounds of herbal medicine have the potential for psoriasis treatment. This study aims to explore the characteristic genes for psoriasis, which herbal compounds may target. Four differential gene expression datasets, with 181 healthy skin and 181 psoriasis skin lesion samples, were used for analysis. This study employed random forest, neural network, and support vector machine algorithms to identify the characteristic genes associated with psoriasis. The identified genes were validated using external datasets. Then, the main compounds were identified. The targets of compounds were collected through SwissTargetPrediction, Super-PRED, HERB databases, and so on. Finally, a batch virtual screening of compounds with the identified characteristic genes was conducted. Open Babel and AutoDock Tools 1.5.6 were used for molecular docking, and Desmond was used to evaluate molecular dynamics simulations. Twelve characteristic genes, successfully validated in external datasets genes, were identified from 1270 differential genes. The 59 compounds identified contained 1795 targets. There are 143 intersections between differential genes and compound targets. Two-hundred and ninety-four compound-target combinations were selected for molecular docking screening. It was finally found that 8 protein-ligand combinations are highly critical for treating psoriasis, namely AKR1B10-Astilbin, AKR1B10-Ferulic acid, AKR1B10-Cianidanol, IL36G-Astilbin, MMP9-Ferulic acid, OASL-Astilbin, PPARG-Astilbin, SERPINB3-Astilbin, molecular dynamics simulations also indicate that these eight pairs of combinations are stable. This research brings a new perspective to the treatment of psoriasis, these characteristic genes and compounds deserve the attention of clinical researchers.Communicated by Ramaswamy H. Sarma.

4.
Carbohydr Polym ; 327: 121668, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171659

RESUMEN

The great structural and functional diversity supports polysaccharides as favorable candidates for new drug development. Previously we reported that a drug candidate pectin-like natural polysaccharide, RN1 might target galectin-3 (Gal-3) to impede pancreatic cancer cell growth in vivo. However, the quality control of polysaccharide-based drug research faces great challenges due to the heterogeneity. A potential solution is to synthesize structurally identified subfragments of this polysaccharide as alternatives. In this work, we took RN1 as an example, and synthesized five subfragments derived from the putative repeating units of RN1. Among them, pentasaccharide 4 showed an approximative binding affinity to Gal-3 in vitro, as well as an antiproliferative activity against pancreatic BxPC-3 cells comparable to that of RN1. Further, we scaled up pentasaccharide 4 to gram-scale in an efficient synthetic route with a 6.9 % yield from D-galactose. Importantly, pentasaccharide 4 significantly suppressed the growth of pancreatic tumor in vivo. Based on the mechanism complementarity of galactin-3 inhibitor and docetaxel, the combination administration of pentasaccharide 4 and docetaxel afforded better result. The result suggested pentasaccharide 4 was one of the functional structural domains of polysaccharide RN1 and might be a leading compound for anti-pancreatic cancer new drug development.


Asunto(s)
Carcinoma , Neoplasias Pancreáticas , Humanos , Pectinas/química , Docetaxel , Polisacáridos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Oligosacáridos , Galectina 3/metabolismo
5.
Fish Shellfish Immunol ; 144: 109284, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092092

RESUMEN

Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.


Asunto(s)
Lubina , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Factores Inmunológicos/metabolismo , Poder Psicológico , Enfermedades de los Peces/prevención & control
6.
J Nat Prod ; 86(8): 1910-1918, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37530709

RESUMEN

Four new δ- and γ-lactone derivatives, hyperelatolides A-D (1-4, respectively), were discovered from the aerial portions of Hypericum elatoides R. Keller. Their structures were elucidated by analysis of NMR spectra, HRESIMS, quantum chemical calculations of NMR and ECD spectra, and X-ray crystallographic data. Hyperelatolides A (1) and B (2) represent the first examples of δ-lactone derivatives characterized by a (Z)-(5,5-dimethyl-2-(2-oxopropyl)cyclohexylidene)methyl moiety and a benzoyloxy group attached to the ß- and γ-positions of the δ-lactone core, respectively, while hyperelatolides C (3) and D (4) are unprecedented γ-lactone derivatives featuring substituents similar to those of 1 and 2. All compounds were tested for their inhibitory effects on NO production in LPS-activated BV-2 cells. Lactones 1 and 2 exhibited considerable antineuroinflammatory activity, with IC50 values of 5.74 ± 0.27 and 7.35 ± 0.26 µM, respectively. Moreover, the mechanistic study revealed that lactone 1 significantly suppressed nuclear factor kappa B signaling and downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced cells, which may contribute to its antineuroinflammatory activity.


Asunto(s)
Hypericum , Hypericum/química , Lipopolisacáridos/farmacología , Espectroscopía de Resonancia Magnética , Lactonas/farmacología , Lactonas/química , Transducción de Señal , Estructura Molecular , Óxido Nítrico
7.
Phytomedicine ; 119: 154982, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37531904

RESUMEN

BACKGROUND: Obesity has emerged as a worldwide metabolic disease, given its rapid growth in global prevalence. Red ginseng extracts (RGS), one of the traditional processed products of ginseng, show the potential to improve the metabolic phenotype of obesity. However, the RGS mechanism for regulating obesity and late insulin resistance remains to be clarified. PURPOSE: This study aimed to emphasize the potential use of RGS in treatment of obesity and insulin resistance (IR) and explore the underlying mechanism affecting glucose and lipid metabolism improvements. METHODS: The role of RGS was evaluated in a high-fat diet (HFD) rodent model. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to characterize the glucose metabolism level. The expression of lipolysis proteins and uncoupling protein-1 (UCP-1) were investigated by western blot. Glucagon-like peptide-1 (GLP-1) and apical sodium-dependent bile acid transporter (ASBT) protein expression in the intestine were determined via immunofluorescence. UPLC-Q-TOF-MS were used to detect the alterations in bile acids (BAs) levels in serum, ileum, and inguinal white adipose tissue (iWAT). In addition, intestine-specific Tgr5 knockout mice were employed to verify the efficacy of RGS in improving obesity. RESULTS: RGS treatment alleviated dietary-induced dyslipidemia and IR in obese mice in a dose-dependent manner and improved glucose and insulin tolerance, and energy expenditure. RGS treatment significantly reduced lipid deposition and induced GLP-1 secretion in the intestine of wild-type mice but not in Tgr5ΔIN obese mice. Furthermore, RGS intervention increased BA levels in serum, ileum, and iWAT. The increase of circulating BAs in mice was related to the activation of ileal TGR5 and the promotion of ASBT translocation to the plasma membrane, thus affecting BA transport. Next, the increased level of circulating BAs entered the periphery, which might facilitate lipolysis and energy consumption by activating TGR5 in iWAT. CONCLUSION: Our results demonstrated that RGS significantly alleviated HFD-induced obesity and insulin resistance in mice. RGS intervention improved glucose metabolism, promoted lipolysis, and energy metabolism by activating TGR5 in the intestine. In addition, we found that activating intestinal TGR5 facilitated the localization of ASBT to the plasma membrane, which ultimately promoted the transport of BAs to regulate metabolic phenotype.


Asunto(s)
Resistencia a la Insulina , Insulinas , Ratones , Animales , Receptores Acoplados a Proteínas G/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Transducción de Señal , Obesidad/tratamiento farmacológico , Glucosa/metabolismo , Intestinos , Ácidos y Sales Biliares , Péptido 1 Similar al Glucagón/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
8.
J Proteomics ; 288: 104959, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37478968

RESUMEN

Danshen, belongs to the Lamiaceae family, and its scientific name is Salvia miltiorrhiza Bunge. It is a valuable medicinal plant to prevent and treat cardiovascular and cerebrovascular diseases. Lysine succinylation, a widespread modification found in various organisms, plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. Our findings reveal 566 lysine succinylation sites in 348 protein sequences. We observed 110 succinylated proteins related to secondary metabolism, totaling 210 modification sites. Our analysis identified 53 types of enzymes among the succinylated proteins, including phenylalanine ammonia-lyase (PAL) and aldehyde dehydrogenase (ALDH). PAL, a crucial enzyme involved in the biosynthesis of rosmarinic acid and flavonoids, displayed succinylation at two sites. ALDH, which participates in the phenylpropane metabolic pathway, was succinylated at 8 eight sites. These observations suggest that lysine succinylation may play a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on plant succinylation, specifically as a reference point. SIGNIFICANCE: Salvia miltiorrhiza Bunge is a valuable medicinal plant that prevents and treats cardiovascular and cerebrovascular diseases. Lysine succinylation plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. These observations suggest that lysine succinylation may act as a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on succinylation in plants, specifically as a reference point.


Asunto(s)
Salvia miltiorrhiza , Metabolismo Secundario , Salvia miltiorrhiza/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem , Proteómica
9.
Environ Sci Technol ; 57(27): 10107-10116, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37364242

RESUMEN

Phosphorus (P) recovery from biosolids can play an important role in a circular economy. Herein, an electrochemical phosphorus recovery cell (EPRC) was proposed and examined to recover P from municipal whole digestate via simultaneous leaching and precipitation. The anode of the EPRC released P as aqueous PO43--P through acidification, achieving the highest leaching efficiency of 93.3% under a current density of 30 A m-2. When the leached P solution was treated in the cathode, native metals including Ca and Fe facilitated electrochemically mediated PO43--P precipitation (EMP) and precipitated ∼99% of the leached P in the cathode chamber. Around 54.3-78.7% of total P existed in two harvestable forms: suspended solids in the cathode effluent and immobilized P in the cathode chamber. The solid products contained 28.42-33.51% of P2O5, comparable to the high-grade phosphate rock. Higher current densities reduced cathode scaling and resulted in a lower content of heavy metals in the solid products. An acidic solution was reused three times and effectively maintained cathode performance during a 42-cycle operation, achieving a consistent P recovery efficiency of nearly 80%. Those results have demonstrated the feasibility of the EPRC for recovering P from P-rich solid wastes.


Asunto(s)
Metales Pesados , Fósforo , Fósforo/química
10.
Zhen Ci Yan Jiu ; 48(4): 372-7, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37186202

RESUMEN

OBJECTIVE: To observe the effects of electroacupuncture (EA) combined with acellular nerve allograft (ANA) on the morphological structure of spinal ganglion cells and the protein expressions of nerve growth factor (NGF) and phosphorylated protein kinase B (p-Akt) in rats with sciatic nerve injury (SNI), so as to explore the protective mechanism of EA combined with ANA on spinal ganglia. METHODS: SPF male SD rats were randomly divided into normal, model, single ANA bridging (bridging) and EA + ANA (combination) groups, with 10 rats in each group. The SNI rat model was established by right sciatic nerve transection. Rats in the bridging group were bridged with ANA to the two broken ends of injured sciatic nerves. Rats in the combination group were treated with EA at "Yanglingquan" (GB34) and "Huantiao" (GB30) 2 d after ANA bridging, with dilatational wave, frequency of 1 Hz/20 Hz, intensity of 1 mA, 15 min/d, 7 d as a course of treatment for 4 consecutive courses. Sciatic function index (SFI) was observed by footprint test. Wet weight ratio of tibialis anterior muscle was calculated after weighing. Morphology of rat spinal ganglion cells was observed after Nissl staining. The protein expressions of NGF and p-Akt were detected by immunofluorescence and Western blot. RESULTS: Compared with the normal group, the SFI and wet weight ratio of tibialis anterior muscle were significantly decreased (P<0.05), the number of Nissl bodies in spinal ganglion cells was significantly reduced (P<0.05) with dissolution and incomplete structure, the protein expressions of NGF and p-Akt in ganglion cells were significantly decreased (P<0.05) in the model group. Following the interventions and in comparison with the model group, the SFI and the wet weight ratio of tibialis anterior muscle were significantly increased (P<0.05), the damage of Nissl bodies in ganglion cells was reduced and the number was obviously increased (P<0.05), and the protein expressions of NGF and p-Akt in ganglion cells were significantly increased (P<0.05) in the bridging and combination groups. Compared with the bridging group, the SFI and the wet weight ratio of tibialis anterior muscle were increased (P<0.05), the morphology of Nissl bodies in ganglion cells was more regular and the number was increased (P<0.05), the protein expressions of NGF and p-Akt in spinal ganglion cells were significantly increased (P<0.05) in the combination group. CONCLUSION: EA combined with ANA can improve the SFI and the wet weight ratio of tibialis anterior muscle in SNI rats, improve the morphology and structure of Nissl bodies in spinal ganglion cells, and increase the protein expressions of NGF and p-Akt in spinal ganglion, so as to play a protective role on spinal ganglia.


Asunto(s)
Aloinjertos , Electroacupuntura , Ganglios Espinales , Traumatismos de los Nervios Periféricos , Nervio Ciático , Animales , Masculino , Ratas , Aloinjertos/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Traumatismos de los Nervios Periféricos/terapia , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Nervio Ciático/lesiones
11.
Zhongguo Zhen Jiu ; 43(5): 509-16, 2023 May 12.
Artículo en Chino | MEDLINE | ID: mdl-37161803

RESUMEN

OBJECTIVE: To observe the effect of acupuncture combined with infantile tuina on intestinal flora and its efficacy in children with tic disorders (TD), and to explore its mechanism. METHODS: A total of 15 children with TD were recruited as an observation group and 10 healthy children as a healthy control group. Regulating spleen and stomach acupuncture combined with infantile tuina were received in the observation group. First, acupuncture was applied to Zhongwan (CV 12), Tianshu (ST 25), Guanyuan (CV 4), Hegu (LI 4), Zusanli (ST 36), etc., and then abdominal massage and other tuina techniques were applied, once a day, 6 times a week, 2 weeks as a course of treatment, a total of 2 courses of treatment were required. No intervention was given in the healthy control group. In the observation group, Yale global tic severity scale (YGTSS) score and TCM syndrome score were compared before treatment and after 1 and 2 courses of treatment. 16S rRNA sequencing technology was used to detect the intestinal flora in the healthy control group and before and after treatment in the observation group. RESULTS: After 1 and 2 courses of treatment, the scores of YGTSS and TCM syndrome in the observation group were lower than those before treatment (P<0.01, P<0.05). Compared with the healthy control group, the number of operational taxonomic units (OTU) and indexes of Chao1, Sobs, Ace and Shannon were decreased in the observation group before treatment (P<0.05, P<0.01). Compared with before treatment, the number of OTU and indexes of Chao1, Sobs, Ace and Shannon were increased in the observation group after treatment (P<0.01, P<0.05). Compared with the healthy control group, the relative abundance of Firmicutes in the observation group before treatment was decreased (P<0.001), while the relative abundance of Bacteroidetes, Bacteroides and Erysipelatoclostridium was increased (P<0.001, P<0.05). Compared with before treatment, the relative abundance of Bacteroidetes in the observation group was decreased (P<0.001) after treatment, while the relative abundance of Actinobacteria, Bifidobacterium and Atopobium was increased (P<0.05, P<0.01). CONCLUSION: Acupuncture combined with infantile tuina based on the principle of regulating spleen and stomach could effectively improve TD symptoms in children, which may be related to regulating the diversity of intestinal flora, increasing beneficial bacteria, maintaining intestinal microecological balance, and playing a role in improving neurological disorders.


Asunto(s)
Terapia por Acupuntura , Microbioma Gastrointestinal , Trastornos de Tic , Niño , Humanos , ARN Ribosómico 16S , Bazo
12.
Arab J Chem ; 16(5): 104663, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36816510

RESUMEN

Coronavirus disease 2019 (COVID-19) is a rapidly emerging infectious disease caused by SARS-CoV-2. Inflammatory factors may play essential roles in COVID-19 progression. Huashi Baidu Decoction (HSBD) is a traditional Chinese medicine (TCM) formula that can expel cold, dispel dampness, and reduce inflammation. HSBD has been widely used for the treatment of COVID-19. However, the active ingredients and potential targets for HSBD to exert anti-inflammatory or anti-SARS-CoV-2 effects remain unclear. In this paper, the active ingredients with anti-inflammatory or anti-viral effects in HSBD and their potential targets were screened using the Discovery Studio 2020 software. By overlapping the targets of HSBD and COVID-19, 8 common targets (FYN, SFTPD, P53, RBP4, IL1RN, TTR, SRPK1, and AKT1) were identified. We determined 2 key targets (P53 and AKT1) by network pharmacology. The main active ingredients in HSBD were evaluated using the key targets as receptor proteins for molecular docking. The results suggested that the best active ingredients Kaempferol2 and Kaempferol3 have the potential as supplements for the treatment of COVID-19.

13.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626779

RESUMEN

AIMS: To evaluate the effects of the Qingwen Gupi decoction (QGT) in a rat model of bleomycin-induced pulmonary fibrosis (PF), and explore the underlying mechanisms by integrating UPLC-Q-TOF/MS metabolomics and 16S rDNA sequencing of gut microbiota. METHODS AND RESULTS: The animals were randomly divided into the control, PF model, pirfenidone-treated, and low-, medium-, and high-dose QGT groups. The lung tissues were examined and the expression of TGF-ß, SMAD-3, and SMAD-7 mRNAs in the lung tissues were analyzed. Metabolomic profiles were analyzed by UPLC-QTOF/MS, and the intestinal flora were examined by prokaryotic 16 rDNA sequencing. Pathological examination and biochemical indices revealed that QGT treatment improved the symptoms of PF by varying degrees. Furthermore, QGT significantly downregulated TGF-ß1 and Smad-3 mRNAs and increased the expression levels of Smad-7. QGT-L in particular increased the levels of 18 key metabolic biomarkers that were associated with nine gut microbial species and may exert antifibrosis effects through arachidonic acid metabolism, glycerophospholipid metabolism, and phenylalanine metabolism. CONCLUSIONS: QGT alleviated PF in a rat model through its anti-inflammatory, antioxidant, and anti-fibrotic effects, and by reversing bleomycin-induced gut dysbiosis.This study lays the foundation for further research on the pathological mechanisms of PF and the development of new drug candidates.


Asunto(s)
Microbioma Gastrointestinal , Fibrosis Pulmonar , Ratas , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Pulmón , Bleomicina/efectos adversos , Factor de Crecimiento Transformador beta/metabolismo , Metabolómica
14.
J Ethnopharmacol ; 300: 115688, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36067838

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, a long term of improper diet causes the Dampness and disturbs Zang-Fu's functions including Kidney deficiency. Atractylodes lancea (Atr) and Magnolia officinalis (Mag) as a famous herb pair are commonly used to transform Dampness, with kidney protection. AIM OF THE STUDY: To explore how Atr and Mag protected against insulin signaling impairment in glomerular podocytes induced by high dietary fructose feeding, a major contributor for insulin resistance in glomerular podocyte dysfunction. MATERIALS AND METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyze constituents of Atr and Mag. Rat model was induced by 10% fructose drinking water in vivo, and heat-sensitive human podocyte cells (HPCs) were exposed to 5 mM fructose in vitro. Animal or cultured podocyte models were treated with different doses of Atr, Mag or Atr and Mag combination. Western blot, qRT-PCR and immunofluorescence assays as well as other experiments were performed to detect adiponectin receptor protein 1 (AdipoR1), protein kinase B (AKT), Sirt1, p53 and miR-221 levels in rat glomeruli or HPCs, respectively. RESULTS: Fifty-five components were identified in Atr and Mag combination. Network pharmacology analysis indicated that Atr and Mag combination might affect insulin signaling pathway. This combination significantly improved systemic insulin resistance and prevented glomerulus morphological damage in high fructose-fed rats. Of note, high fructose decreased IRS1, AKT and AdipoR1 in rat glomeruli and cultured podocytes. Further data from cultured podocytes with Sirt1 inhibitor/agonist, p53 agonist/inhibitor, or miR-221 mimic/inhibitor showed that high fructose downregulated Sirt1 to stimulate p53-driven miR-221, resulting in insulin signaling impairment. Atr and Mag combination effectively increased Sirt1, and decreased p53 and miR-221 in in vivo and in vitro models. CONCLUSIONS: Atr and Mag combination improved insulin signaling in high fructose-stimulated glomerular podocytes possibly through upregulating Sirt1 to inhibit p53-driven miR-221. Thus, the regulation of Sirt1/p53/miR-221 by this combination may be a potential therapeutic approach in podocyte insulin signaling impairment.


Asunto(s)
Atractylodes , Agua Potable , Resistencia a la Insulina , Magnolia , MicroARNs , Podocitos , Animales , Proteínas Portadoras/metabolismo , Cromatografía Liquida , Agua Potable/metabolismo , Fructosa/efectos adversos , Humanos , Insulina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptores de Adiponectina/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Espectrometría de Masas en Tándem , Proteína p53 Supresora de Tumor/metabolismo
15.
J Nat Prod ; 86(1): 119-130, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36579935

RESUMEN

Nine new sesquiterpenes, hyperhubeins A-I (1-9), and 14 known analogues (10-23) were isolated from the aerial portions of Hypericum hubeiense. Their structures and absolute configurations were determined unambiguously via spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism calculations. Compounds 1-3 possess an unprecedented sesquiterpene carbon skeleton. Further, a plausible biosynthetic pathway from farnesyl diphosphate (FPP) is proposed. The isolated phytochemicals were evaluated for neuroprotective and anti-neuroinflammatory properties in vitro. Compounds 1, 2, 5-8, 14, and 21 displayed notable neuroprotective activity against hydrogen peroxide (H2O2)-induced lesions in PC-12 cells at 10 µM. Additionally, compounds 1, 2, 12, and 13 exhibited inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglial cells, with their IC50 values ranging from 4.92 to 6.81 µM. Possible interactions between these bioactive compounds and inducible nitric oxide synthase (iNOS) were predicted via molecular docking. Moreover, Western blotting indicated that compound 12 exerted anti-neuroinflammatory activity by suppressing LPS-stimulated expression of toll-like receptor-4 (TLR-4) and inhibiting consequent activation of nuclear factor-kappa-B (NF-κB) signaling.


Asunto(s)
Hypericum , Sesquiterpenos , Antiinflamatorios/química , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Microglía/metabolismo , Dicroismo Circular , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/metabolismo
16.
Zhongguo Zhen Jiu ; 42(9): 971-6, 2022 Sep 12.
Artículo en Chino | MEDLINE | ID: mdl-36075591

RESUMEN

OBJECTIVE: To observe the efficacy of the combined treatment with acupuncture and governor vessel moxibustion on ankylosing spondylitis (AS) at early-middle stage and investigate the effect on bone marrow edema of sacroiliac joint. METHODS: Seventy patients of AS at early-middle stage were randomized into an observation group (35 cases) and a control group (35 cases, 1 case dropped off ). In the control group, the recombinant human tumor necrosis factor receptor-antibody of type Ⅱ fusion protein for injection was injected subcutaneously, 25 mg each time, once on every Monday and Friday, consecutively for 3 weeks. In the observation group, on the base of the intervention as the control group, acupuncture combined with governor vessel moxibustion were provided. Acupuncture was applied to Dazhui (GV 14), Changqiang (GV 1), Zhibian (BL 54), Baihui (GV 20), etc.; the thermal needling technique was adopted at Dazhui (GV 4) and Changqiang (GV 1) for promoting the circulation of the governor vessel, and the ginger-isolated moxibustion on the governor vessel was combined. Such intervention measure was provided once daily. One treatment session contained 7 treatments and 3 sessions were required. Before and after treatment, the scores of Spondyloarthritis Research Consortium of Canada (SPARCC), Bath ankylosing spondylitis disease activity index (BASDAI) and Bath ankylosing spondylitis functional index (BASFI) and Bath ankylosing spondylitis patient global score (BAS-G) were observed in the two groups separately. The efficacy and adverse effects were assessed in the two groups after treatment. RESULTS: The scores of SPARCC, BASDAI, BASFI and BAS-G were all reduced after treatment compared with those before treatment in the two groups (P<0.05), and those in the observation group were lower than the control group (P<0.05). The total effective rate was 97.1% (34/35) in the observation group, higher than 82.4% (28/34) in the control group (P<0.05). There were 4 cases of gastrointestinal reactions and 1 case of skin rashes in the control group; and 3 cases of local skin redness and pruritus after governor vessel moxibustion, no any drug adverse effect was found in the observation group. CONCLUSION: Based on the western medicine treatment, the combined therapy of acupuncture and governor vessel moxibustion may relieve bone marrow edema of sacroiliac joint in patients with AS at early-middle stage, control the progression of disease and improve the daily life activity. This therapy is relatively safe and effective.


Asunto(s)
Terapia por Acupuntura , Moxibustión , Espondilitis Anquilosante , Puntos de Acupuntura , Terapia por Acupuntura/métodos , Médula Ósea , Edema/etiología , Edema/terapia , Humanos , Moxibustión/métodos , Articulación Sacroiliaca , Espondilitis Anquilosante/terapia
17.
Water Res ; 223: 118996, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36037712

RESUMEN

With the rising concern over the depletion of phosphorus rock, phosphorus recovery from wastewater has become a key step for sustainable economy. Herein, simultaneous phosphorus leaching and nutrient recovery were accomplished in an electrochemical nutrient recovery cell (ENRC) treating digested anaerobic sludge. The anode reaction of water electrolysis lowered the sludge pH from 8.0 to 2.0 at a current density of 25 A m-2, elevating the PO43--P concentration from 27.72 to 253.47 mg L-1, comparable to that from direct acid leaching. The released PO43--P was transferred to the cathode chamber for recovery, where PO43--P recovery efficiency was enhanced from 42.0% to 90.3% by 0.26 M HCl catholyte acidification. The ENRC recovered 90-98% of the coexisting NH4+-N in the sludge. Increasing current density accelerated both phosphorus leaching and PO43--P & NH4+-N recovery, but at the expense of a higher energy consumption. After five consecutive cycles of operation, the PO43--P and NH4+-N concentrations reached 404.56 and 3493.56 mg L-1, respectively, at a normalized energy consumption of 229.20 ± 30.13 kWh kg-1 P or 25.67 ± 3.07 kWh kg -1 N. At pH 8.5, 99% of the recovered aqueous PO43--P in the recovery solution precipitated, mainly as calcium phosphate that can have a good soil phosphorus availability. The results of this study have provided a foundation for further exploration of electrochemically leaching P from waste sludge with simultaneous nutrient recovery.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Anaerobiosis , Nutrientes , Suelo , Aguas Residuales , Agua
18.
Bull Environ Contam Toxicol ; 109(1): 110-121, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35680738

RESUMEN

An effective method of iron extraction from bauxite residue was explored, and iron was used to prepare iron carbon composite material, which have a good adsorption effect on the heavy metal cadmium. After acid washing, acid leaching, Fe(III) reduction and ferrous oxalate decomposition, FeSO4·H2O(RM) was successfully extracted from bauxite residue, and the iron loss was only 4.35%. FexOy-BC(RM) nanocomposite materials were prepared by loading FeSO4·H2O(RM) onto walnut shell biochar (BC) (a kind of agricultural and forestry waste) by an in situ reduction and oxidation method. The results showed that the adsorption effect of FexOy-BC(RM) on Cd(II) was better than that of commercial FexOy-BC. XPS, TEM, SEM characterization analysis showed that FexOy-BC(RM) immobilized Cd(II) by adsorption, complexation, etc.to achieve a highly efficient adsorption of heavy metal Cd(II) in wastewater.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Óxido de Aluminio , Cadmio/análisis , Carbono , Carbón Orgánico/química , Hierro/análisis , Metales Pesados/química , Contaminantes Químicos del Agua/análisis
19.
Bioorg Chem ; 116: 105274, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455301

RESUMEN

Traditional Chinese herbal compound prescription in Xuanfei Baidu Tang (XBT) has obvious effects in the treatment of COVID-19. However, its effective compounds and targets for the treatment of COVID-19 remain unclear. Computer-Aided Drug Design is used to virtually screen out the anti-inflammatory or anti-viral compounds in XBT, and predict the potential targets by Discovery Studio 2020. Then, we searched for COVID-19 targets using Genecards databases and Protein Data Bank (PDB) databases and compared them to identify targets that were common to both. Finally, the target we screened out is: TP53 (Tumor Protein P53). This article also shows that XBT in the treatment of COVID-19 works in a multi-link and overall synergistic manner. Our results will help to design the new drugs for COVID-19.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacología , SARS-CoV-2/efectos de los fármacos , Antiinflamatorios no Esteroideos/química , Antivirales/química , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/química , Humanos , Medicina Tradicional China , Estructura Molecular , SARS-CoV-2/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo
20.
Cell Mol Gastroenterol Hepatol ; 12(3): 857-871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33989817

RESUMEN

BACKGROUND AND AIMS: Butyric acid is an intestinal microbiota-produced short-chain fatty acid, which exerts salutary effects on alleviating nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism of butyrate on regulating hepatic lipid metabolism is largely unexplored. METHODS: A mouse model of NAFLD was induced with high-fat diet feeding, and sodium butyrate (NaB) intervention was initiated at the eighth week and lasted for 8 weeks. Hepatic steatosis was evaluated and metabolic pathways concerning lipid homeostasis were analyzed. RESULTS: Here, we report that administration of NaB by gavage once daily for 8 weeks causes an augmentation of insulin-induced gene (Insig) activity and inhibition of lipogenic gene in mice fed with high-fat diet. Mechanistically, NaB is sufficient to enhance the interaction between Insig and its upstream kinase AMP-activated protein kinase (AMPK). The stimulatory effects of NaB on Insig-1 activity are abolished in AMPKα1/α2 double knockout (AMPK-/-) mouse primary hepatocytes. Moreover, AMPK activation by NaB is mediated by LKB1, as evidenced by the observations showing NaB-mediated induction of phosphorylation of AMPK, and its downstream target acetyl-CoA carboxylase is diminished in LKB1-/- mouse embryonic fibroblasts. CONCLUSIONS: These studies indicate that NaB serves as a negative regulator of hepatic lipogenesis in NAFLD and that NaB attenuates hepatic steatosis and improves lipid profile and liver function largely through the activation of LKB1-AMPK-Insig signaling pathway. Therefore, NaB has therapeutic potential for treating NAFLD and related metabolic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ácido Butírico/farmacología , Suplementos Dietéticos , Regulación de la Expresión Génica , Insulina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Insulina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Modelos Biológicos , Enfermedad del Hígado Graso no Alcohólico/patología , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA