Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37941895

RESUMEN

Viola L. is the largest genus of the Violaceae family with more than 500 species across the globe. The present extensive literature survey revealed Viola species to be a group of important nutritional and medicinal plants used for the ethnomedicinal treatment of noncommunicable diseases (NCDs) such as diabetes, asthma, lung diseases, and fatigue. Many plant species of this genus have also received scientific validation of their pharmacological activities including neuroprotective, immunomodulatory, anticancer, antihypertensive, antidyslipidemic, analgesic, antipyretic, diuretic, anti-inflammatory, anthelmintic, and antioxidant. Viola is highly rich in different natural products some of which have been isolated and identified in the past few decades; these include flavonoids terpenoids and phenylpropanoids of different pharmacological activities. The pharmacokinetics and clinical studies on this genus are lacking, and the present review is aimed at summarizing the current understanding of the ethnopharmacology, phytochemistry, nutritional composition, and pharmacological profile of medicinal plants from the Viola genus to reveal its therapeutic potentials, gaps, and subsequently open a new window for future pharmacological research.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 877-900, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773055

RESUMEN

Lavandula species is a flowering plant that is common in Europe and across the Mediterranean. Lavender has many health benefits for humans. In addition to its use in herbal medicine, it is widely used in the fields of cosmetics, perfumes, foods, and aromatherapy. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical ingredients, the pharmacologic effects of the ingredients, and the mechanism of action of the Lavandula species identified. These materials were reviewed in order to have access to important updates about the Lavandula species. Lavender as referred to in English contains essential oils, anthocyanins, phytosterols, sugars, minerals, coumaric acid, glycolic acid, valeric acid, ursolic acid, herniarins, coumarins, and tannins. It has been used to treat colic and chest ailments, worrisome headaches, and biliousness, and in cleaning wounds. It has antifungal, antibacterial, neurologic, antimicrobial, anti-parasitic, anti-diabetic, and analgesic effects among others. Lavandula species has prospects for various biological applications, especially with its dermatological application. Advances in drug development would enable characterization of various bioactive constituents; thus, its development and application can have a more positive impact on humanity. Here, we highlighted updated information on the history, distribution, traditional uses, phytochemical components, pharmacology, and various biological activities of Lavandula species.


Asunto(s)
Antiinfecciosos , Lavandula , Aceites Volátiles , Humanos , Lavandula/química , Antocianinas , Aceites Volátiles/farmacología , Aceites Volátiles/química , Fitoquímicos/farmacología , Antiinfecciosos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(3): 405-420, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36399185

RESUMEN

Medicinal plants have a long track record of use in history, and one of them is Commiphora myrrh which is commonly found in the southern part of Arabia, the northeastern part of Africa, in Somalia, and Kenya. Relevant literatures were accessed via Google Scholar, PubMed, Scopus, and Web of Science to give updated information on the phytochemical constituents and pharmacological action of Commiphora myrrh. It has been used traditionally for treating wounds, mouth ulcers, aches, fractures, stomach disorders, microbial infections, and inflammatory diseases. It is used as an antiseptic, astringent, anthelmintic, carminative, emmenagogue, and as an expectorant. Phytochemical studies have shown that it contains terpenoids (monoterpenoids, sesquiterpenoids, and volatile/essential oil), diterpenoids, triterpenoids, and steroids. Its essential oil has applications in cosmetics, aromatherapy, and perfumery. Research has shown that it exerts various biological activities such as anti-inflammatory, antioxidant, anti-microbial, neuroprotective, anti-diabetic, anti-cancer, analgesic, anti-parasitic, and recently, it was found to work against respiratory infections like COVID-19. With the advancement in drug development, hopefully, its rich phytochemical components can be explored for drug development as an insecticide due to its great anti-parasitic activity. Also, its interactions with drugs can be fully elucidated.This review highlights an updated information on the history, distribution, traditional uses, phytochemical components, pharmacology, and various biological activities of Commiphora myrrh. Graphical summary of the phytochemical and pharmacological update of Commiphora myrrh.


Asunto(s)
COVID-19 , Aceites Volátiles , Humanos , Commiphora , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia
4.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707790

RESUMEN

Pepper originated from the Capsicum genus, which is recognized as one of the most predominant and globally distributed genera of the Solanaceae family. It is a diverse genus, consisting of more than 31 different species including five domesticated species, Capsicum baccatum, C. annuum, C. pubescen, C. frutescens, and C. chinense. Pepper is the most widely used spice in the world and is highly valued due to its pungency and unique flavor. Pepper is a good source of provitamin A; vitamins E and C; carotenoids; and phenolic compounds such as capsaicinoids, luteolin, and quercetin. All of these compounds are associated with their antioxidant as well as other biological activities. Interestingly, Capsicum fruits have been used as food additives in the treatment of toothache, parasitic infections, coughs, wound healing, sore throat, and rheumatism. Moreover, it possesses antimicrobial, antiseptic, anticancer, counterirritant, appetite stimulator, antioxidant, and immunomodulator activities. Capsaicin and Capsicum creams are accessible in numerous ways and have been utilized in HIV-linked neuropathy and intractable pain.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Capsicum/química , Capsicum/clasificación , Frutas/química , Extractos Vegetales/farmacología , Capsicum/metabolismo , Carotenoides/análisis , Flavonoides/análisis , Irritantes/farmacología , Fenoles/análisis , Extractos Vegetales/química , Vitaminas/análisis
5.
Nutrients ; 12(3)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213941

RESUMEN

Medicinal plants have been used from ancient times for human healthcare as in the form of traditional medicines, spices, and other food components. Garlic (Allium sativum L.) is an aromatic herbaceous plant that is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, renoprotective, anti-atherosclerotic, antibacterial, antifungal, and antihypertensive activities in traditional medicines. A. sativum is rich in several sulfur-containing phytoconstituents such as alliin, allicin, ajoenes, vinyldithiins, and flavonoids such as quercetin. Extracts and isolated compounds of A. sativum have been evaluated for various biological activities including antibacterial, antiviral, antifungal, antiprotozoal, antioxidant, anti-inflammatory, and anticancer activities among others. This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.


Asunto(s)
Ajo/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Productos Biológicos/química , Productos Biológicos/farmacología , Disulfuros , Estabilidad de Medicamentos , Humanos , Fitoquímicos/farmacocinética , Fitoquímicos/uso terapéutico , Extractos Vegetales/farmacocinética , Extractos Vegetales/uso terapéutico , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacología
6.
Biomolecules ; 10(2)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019140

RESUMEN

Herbal medicinal products have been documented as a significant source for discovering new pharmaceutical molecules that have been used to treat serious diseases. Many plant species have been reported to have pharmacological activities attributable to their phytoconstituents such are glycosides, saponins, flavonoids, steroids, tannins, alkaloids, terpenes, etc. Syzygium aromaticum (clove) is a traditional spice that has been used for food preservation and possesses various pharmacological activities. S. aromaticum is rich in many phytochemicals as follows: sesquiterpenes, monoterpenes, hydrocarbon, and phenolic compounds. Eugenyl acetate, eugenol, and ß-caryophyllene are the most significant phytochemicals in clove oil. Pharmacologically, S. aromaticum has been examined toward various pathogenic parasites and microorganisms, including pathogenic bacteria, Plasmodium, Babesia, Theileria parasites, Herpes simplex, and hepatitis C viruses. Several reports documented the analgesic, antioxidant, anticancer, antiseptic, anti-depressant, antispasmodic, anti-inflammatory, antiviral, antifungal, and antibacterial activity of eugenol against several pathogenic bacteria including methicillin-resistant Staphylococcusepidermidis and S. aureus. Moreover, eugenol was found to protect against CCl4-induced hepatotoxicity and showed a potential lethal efficacy against the multiplication of various parasites including Giardia lamblia, Fasciolagigantica, Haemonchuscontortus, and Schistosomamansoni. This review examines the phytochemical composition and biological activities of clove extracts along with clove essential oil and the main active compound, eugenol, and implicates new findings from gas chromatography-mass spectroscopy (GC-MS) analysis.


Asunto(s)
Aceite de Clavo/química , Eugenol/análogos & derivados , Extractos Vegetales/química , Syzygium/química , Animales , Antioxidantes/química , Eugenol/farmacología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA