Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 219: 112186, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33892284

RESUMEN

Harmful algal blooms in inland waters are widely linked to excess phosphorus (P) loading, but increasing evidence shows that their growth and formation can also be influenced by nitrogen (N) and iron (Fe). Deficiency in N, P, and Fe differentially affects cellular photosystems and is manifested as changes in photosynthetic yield (Fv/Fm). While Fv/Fm has been increasingly used as a rapid and convenient in situ gauge of nutrient deficiency, there are few rigorous comparisons of instrument sensitivity and ability to resolve specific nutrient stresses. This study evaluated the application of Fv/Fm to cyanobacteria using controlled experiments on a single isolate and tested three hypotheses: i) single Fv/Fm measurements taken with different PAM fluorometers can distinguish among limitation by different nutrients, ii) measurements of Fv/Fm made by the addition of DCMU are comparable to PAM fluorometers, and iii) dark adaptation is not necessary for reliable Fv/Fm measurements. We compared Fv/Fm taken from the bloom-forming Microcystis aeruginosa (UTEX LB 3037) grown in nutrient-replete treatment (R) and N-, P-, and Fe-limited treatments (LN, LP, LFe, respectively), using three pulse-amplitude modulated (PAM) fluorometers and the chemical photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and evaluated the effects of dark adaptation prior to PAM measurement. There were significant differences in Fv/Fm estimates among PAM fluorometers for light- versus dark-adapted cell suspensions over the whole experiment (21 days), which were all significantly higher than the DCMU-based measurements. However, dark adaptation had no effect on Fv/Fm when comparing PAM-based values across a single nutrient treatment. All Fv/Fm methods could distinguish LN and LP from R and LFe treatments but none were able to resolve LFe from R, or LN from LP cultures. These results indicated that for most PAM applications, dark adaptation is not necessary, and furthermore that single measurements of Fv/Fm do not provide a robust measurement of nutrient limitation in Microcystis aeruginosa UTEX LB 3037, and potentially other, common freshwater cyanobacteria.


Asunto(s)
Fluorometría/métodos , Microcystis/metabolismo , Nutrientes/química , Clorofila/química , Diurona/farmacología , Floraciones de Algas Nocivas/efectos de los fármacos , Floraciones de Algas Nocivas/efectos de la radiación , Hierro/química , Luz , Microcystis/crecimiento & desarrollo , Microcystis/efectos de la radiación , Nitrógeno/química , Nutrientes/farmacología , Fósforo/química , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación
2.
Harmful Algae ; 87: 101624, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31349881

RESUMEN

Over the past two decades there has been a re-emergence of regular harmful algal blooms in Lake Erie due to increasing phosphorus loading, mainly from non-point agricultural sources. The Canadian and United States governments have jointly agreed to reduce phosphorus loadings to the lake in order to control the extent and severity of the blooms. Citizens on both sides of the border face a number of economic costs, both market and non-market, as a result of the blooms. This study values these costs for the Canadian portion of the Lake Erie basin economy using standard economic approaches that are widely applied within the world of cost-benefit analysis. The results suggest that algal blooms will impose equivalent annual costs equal to $272 million in 2015 prices over a 30-year period if left unchecked. The largest market costs will be imposed on the tourism industry ($110 million in equivalent annual costs) and the largest non-market costs will be borne by recreational users and those who place inherent value on the lake's quality ($115 million in equivalent annual costs). Management action to reduce phosphorus loadings is found to be justified on economic grounds if the 30-year net present value of the reduction program is less than $1294 million (2015 Canadian dollars).


Asunto(s)
Floraciones de Algas Nocivas , Lagos , Canadá , Fósforo , Estados Unidos
3.
Harmful Algae ; 56: 44-66, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-28073496

RESUMEN

Lake Erie supplies drinking water to more than 11 million consumers, processes millions of gallons of wastewater, provides important species habitat and supports a substantial industrial sector, with >$50 billion annual income to tourism, recreational boating, shipping, fisheries, and other industries. These and other key ecosystem services are currently threatened by an excess supply of nutrients, manifested in particular by increases in the magnitude and extent of harmful planktonic and benthic algal blooms (HABs) and hypoxia. Widespread concern for this important international waterbody has been manifested in a strong focus of scientific and public material on the subject, and commitments for Canada-US remedial actions in recent agreements among Federal, Provincial and State agencies. This review provides a retrospective synthesis of past and current nutrient inputs, impairments by planktonic and benthic HABs and hypoxia, modelling and Best Management Practices in the Lake Erie basin. The results demonstrate that phosphorus reduction is of primary importance, but the effects of climate, nitrogen and other factors should also be considered in the context of adaptive management. Actions to reduce nutrient levels by targeted Best Management Practices will likely need to be tailored for soil types, topography, and farming practices.


Asunto(s)
Eutrofización , Lagos/microbiología , Anaerobiosis , Animales , Canadá , Cianobacterias , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Nitrógeno , Fósforo
4.
Environ Sci Technol ; 50(2): 604-15, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26654276

RESUMEN

Although toxic cyanobacterial blooms in western Lake Erie threaten drinking water supplies and are promoted by nutrient loading, the precise nutrient regime that selects specific cyanobacteria populations is poorly understood. Here, we assess shifts in cyanobacterial abundances and global gene-expression patterns in response to natural and manipulated gradients in nitrogen and phosphorus to identify gene pathways that facilitate dominance by different cyanobacteria. Gradients in soluble reactive phosphorus shaped cyanobacterial communities and elicited the largest transcriptomic responses. Under high-P conditions (closest to the mouth of the Maumee River), Anabaena and Planktothrix were the dominant cyanobacterial populations, and experimental P and ammonium enrichment promoted nitrogen fixation gene (nifH) expression in Anabaena. For Microcystis, experimental additions of P up-regulated genes involved in phage defense, genomic rearrangement, and nitrogen acquisition but led to lower abundances. Within offshore, low-P regions of the western basin of Lake Erie, Microcystis up-regulated genes associated with P scavenging (pstSCAB, phoX) and dominated cyanobacterial communities. Experimental additions of ammonium and urea did not alter Microcystis abundances but did up-regulate protease inhibitors (aer and mcn gene sets) and microcystin synthetase genes (mcy), with urea enrichment yielding significant increases in microcystin concentrations. Our findings suggest that management plans that reduce P loads alone may not significantly reduce the risk of cyanobacterial blooms in western Lake Erie but rather may promote a shift among cyanobacterial populations (Microcystis, Anabaena, and Planktothrix) toward a greater dominance by toxic strains of Microcystis.


Asunto(s)
Proteínas Bacterianas/genética , Cianobacterias/fisiología , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Lagos/microbiología , Ohio , Análisis de Secuencia de ADN , Transcriptoma
5.
Environ Sci Technol ; 49(12): 7197-207, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25992592

RESUMEN

Sandusky Bay experiences annual toxic cyanobacterial blooms dominated by Planktothrix agardhii/suspensa. To further understand the environmental drivers of these events, we evaluated changes in the growth response and toxicity of the Planktothrix-dominated blooms to nutrient amendments with orthophosphate (PO4) and inorganic and organic forms of dissolved nitrogen (N; ammonium (NH4), nitrate (NO3) and urea) over the bloom season (June - October). We complemented these with a metagenomic analysis of the planktonic microbial community. Our results showed that bloom growth and microcystin (MC) concentrations responded more frequently to additions of dissolved N than PO4, and that the dual addition of NH4 + PO4 and Urea + PO4 yielded the highest MC concentrations in 54% of experiments. Metagenomic analysis confirmed that P. agardhii/suspensa was the primary MC producer. The phylogenetic distribution of nifH revealed that both heterocystous cyanobacteria and heterotrophic proteobacteria had the genetic potential for N2 fixation in Sandusky Bay. These results suggest that as best management practices are developed for P reductions in Sandusky Bay, managers must be aware of the negative implications of not managing N loading into this system as N may significantly impact cyanobacterial bloom size and toxicity.


Asunto(s)
Bahías/microbiología , Eutrofización , Lagos/microbiología , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton/crecimiento & desarrollo , Biomasa , Cianobacterias/crecimiento & desarrollo , Geografía , Fijación del Nitrógeno , Lluvia , Estaciones del Año , Calidad del Agua
6.
Chemosphere ; 51(8): 765-73, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12668035

RESUMEN

Pulp and paper mills are well known for their sharp, sulphurous stack emissions, but the secondary treatment units also can be significant contributors to local odour. This study investigated the source(s) of earthy/musty emissions from a mixed hardwood pulp mill in response to a high local odour. Samples from five sites in the mill over five months were analyzed for earthy/musty volatile organic compounds (VOCs), examined microscopically, and plated for bacteria and moulds. In all cases, activated sludge showed substantial geosmin levels and to a lesser extent 2-methylisoborneol (MIB) at 2000-9000 times their odour threshold concentrations (OTCs). These VOCs were lower or absent upstream and downstream, suggesting that they were produced within the bioreactor. Geosmin and MIB were highest in late summer and declined over winter, and correlated with different operating parameters. Geosmin was most closely coupled with temperature and MIB with nitrogen uptake. Cyanobacteria were present in all sludge samples, but actinomycetes were not found. Gram-negative bacteria and one fungal species isolated from the bioreactor and secondary outfall tested negative for geosmin or MIB. We conclude: (i) geosmin and MIB contribute significantly to airborne odours from this mill, but are diluted below OTC levels at the river; (ii) these VOCs are generated by biota in the activated sludge; and (iii) cyanobacteria are likely primary source(s). The growth of cyanobacteria in activated sludge represents a loss of energy to the heterotrophic population; thus earthy/musty odours may represent a diagnostic for less than optimal conditions.


Asunto(s)
Canfanos/análisis , Naftoles/análisis , Odorantes , Eliminación de Residuos Líquidos , Actinobacteria , Reactores Biológicos , Cianobacterias , Monitoreo del Ambiente , Residuos Industriales , Papel , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA