Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 67(1): 143-54, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18047582

RESUMEN

RNA interference is mediated by small interfering RNAs produced by members of the ribonuclease III (RNase III) family represented by bacterial RNase III and eukaryotic Rnt1p, Drosha and Dicer. For mechanistic studies, bacterial RNase III has been a valuable model system for the family. Previously, we have shown that RNase III uses two catalytic sites to create the 2-nucleotide (nt) 3' overhangs in its products. Here, we present three crystal structures of RNase III in complex with double-stranded RNA, demonstrating how Mg(2+) is essential for the formation of a catalytically competent protein-RNA complex, how the use of two Mg(2+) ions can drive the hydrolysis of each phosphodiester bond, and how conformational changes in both the substrate and the protein are critical elements for assembling the catalytic complex. Moreover, we have modelled a protein-substrate complex and a protein-reaction intermediate (transition state) complex on the basis of the crystal structures. Together, the crystal structures and the models suggest a stepwise mechanism for RNase III to execute the phosphoryl transfer reaction.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Secuencia de Bases , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Magnesio/metabolismo , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fósforo/metabolismo , Estructura Terciaria de Proteína , ARN Catalítico/química , ARN Catalítico/metabolismo , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato
2.
J Struct Funct Genomics ; 2(2): 83-92, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12836665

RESUMEN

It is difficult to imagine any strategy for high-throughput protein expression and purification that does not involve genetically engineered affinity tags. Because of its ability to enhance the solubility and promote the proper folding of its fusion partners, Escherichia coli maltose-binding protein (MBP) is a particularly useful affinity tag. However, not all MBP fusion proteins bind efficiently to amylose resin, and even when they do it is usually not possible to obtain a sample of adequate purity after a single affinity step. To address this problem, we endeavored to incorporate supplemental affinity tags within the framework of an MBP fusion protein. We show that both the nature of the supplemental tags and their location can influence the ability of MBP to promote the solubility of its fusion partners. The most promising configurations for high-throughput protein expression and purification appear to be a fusion protein with a biotin acceptor peptide (BAP) on the N-terminus of MBP and/or a hexahistidine tag (His-tag) on the C-terminus of the passenger protein.


Asunto(s)
Marcadores de Afinidad/química , Proteínas de Escherichia coli/química , Proteínas de Unión Periplasmáticas/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Biotinilación , Cromatografía de Afinidad , Cromatografía por Intercambio Iónico , Cristalización , Electroforesis en Gel de Poliacrilamida , Endopeptidasas/metabolismo , Genes Sintéticos , Vectores Genéticos/genética , Histidina/química , Datos de Secuencia Molecular , Peso Molecular , Unión Proteica , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solubilidad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA