Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 234: 116589, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423354

RESUMEN

Strengthening direct interspecies electron transfer (DIET), via adding conductive materials, is regarded as an effective way for improving methane productivity of anaerobic digestion (AD). Therein, the supplementation of combined materials (composition of biochar and iron-based materials) has attracted increasing attention in recent years, because of their advantages of promoting organics reduction and accelerating biomass activity. However, as far as we known, there is no study comprehensively summarizing the application of this kind combined materials. Here, the combined methods of biochar and iron-based materials in AD system were introduced, and then the overall performance, potential mechanisms, and microbial contribution were summarized. Furthermore, a comparation of the combinated materials and single material (biochar, zero valent iron, or magnetite) in methane production was also evaluated to highlight the functions of combined materials. Based on these, the challenges and perspectives were proposed to point the development direction of combined materials utilization in AD field, which was hoped to provide a deep insight in engineering application.


Asunto(s)
Biocombustibles , Hierro , Anaerobiosis , Reactores Biológicos , Metano , Aguas del Alcantarillado
2.
J Hazard Mater ; 451: 131205, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934701

RESUMEN

Metals pollution of lead in agricultural soils is a serious problem for food safety. Therefore, we investigated the toxic effects of carbonate-bound fraction Pb on agricultural soil from various aspects. The results revealed that a higher carbonate-bound fraction of Pb had more toxic effects on wheat growth, as evidenced by higher malondialdehyde (3.17 µmol g-1 FW) and lower catalase levels (9.77 µg-1 FW min-1). In terms of nutrient cycling, soil nutrients including carbon, nitrogen, and phosphorus would slow down transformation rates in high concentrations. Compared to carbon, nitrogen and phosphorus were more likely to be affected by the initial carbonate-bound fraction at the earlier stage. Increased Pb dosage may reduce the soil enzymes activity such as urease (119-50 U g-1) and phosphatase (3191-967 U g-1), as well as the functional genes of nitrogen degradation related nirK, nisS, and carbon related pmoA. Correlation analysis and structural equation modeling indicated that carbonate bound Pb could regulate nutrients cycle via functional genes inhibition, soil enzyme activity reduction and wheat growth suppression in agricultural soil. Our findings will help with polluted agricultural soil monitoring and regulation through microbial activity to ensure food safety.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Plomo/toxicidad , Plomo/análisis , Carbonatos/análisis , Fósforo , Carbono , Nutrientes/análisis , Nitrógeno/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis
3.
Chemosphere ; 165: 100-109, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27639465

RESUMEN

Soil aquifer treatment (SAT) systems rely on extensive physical and biogeochemical processes in the vadose zone and aquifer for water quality improvement. In this study, the distribution, quantitative changes, as well as the speciation characteristics of heavy metals in different depth of soils of a two-year operated lab-scale SAT was explored. A majority of the heavy metals in the recharged secondary effluent were efficiently trapped by the steady-state operated SAT (removal efficiency ranged from 74.7% to 98.2%). Thus, significant accumulations of 31.7% for Cd, 15.9% for Cu, 15.3% for Zn and 8.6% for Cr were observed for the top soil after 730 d operation, leading to the concentration (in µg g-1) of those four heavy metals of the packed soil increased from 0.51, 46.7, 61.0 and 35.7 to 0.66, 54.2, 70.4 and 38.8, respectively. By contrast, the accumulation of Mn and Pb were quite low. The residual species were the predominant fraction of the six heavy metals (ranged for 59.8-82.4%), followed by oxidisable species. Although the Zn, Cr, Cd, Cu and Mn were efficiently bounded onto the oxide components within the soil, the percentage of the labile metal fractions (water-, acid-exchangeable and reducible metal fractions) exhibited a slight increasing after 2 Y operation. Significantly heavy metals accumulation and slightly decreasing of the proportion of the stable fractions indicated a potentially higher environmental hazard for those six heavy metals after long-term SAT operation (especially for Cu, Zn and Cd). Finally, a linear relationship between the accumulation rate of metal species and the variation of soil organic carbon concentration and water extractable organic carbon was demonstrated.


Asunto(s)
Agua Subterránea/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Monitoreo del Ambiente/métodos
4.
J Environ Manage ; 156: 158-66, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25845997

RESUMEN

Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly.


Asunto(s)
Biodegradación Ambiental , Carbón Mineral , Agua Subterránea/química , Compuestos Orgánicos , Suelo/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Reciclaje , Eliminación de Residuos/métodos , Trihalometanos
5.
Environ Monit Assess ; 185(6): 4591-603, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23054268

RESUMEN

This work investigated the effect of soil aquifer treatment (SAT) operation on the fluorescence characteristics of dissolved organic matter (DOM) fractions in soils through laboratory-scale soil columns with a 2-year operation. The resin adsorption technique (with XAD-8 and XAD-4 resins) was employed to characterize the dissolved organic matter in soils into five fractions, i.e., hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The synchronous fluorescence spectra revealed the presence of soluble microbial byproduct- and humic acid-like components and polycyclic aromatic compounds in DOM in soils, and SAT operation resulted in the enrichment of these fluorescent materials in all DOM fractions in the surface soil (0-12.5 cm). More importantly, the quantitative method of fluorescence regional integration was used in the analysis of excitation-emission matrix (EEM) spectra of DOM fractions in soils. The cumulative EEM volume (Φ T, n ) results showed that SAT operation led to the enrichment of more fluorescent components in HPO-A and TPI-A, as well as the dominance of less fluorescent components in HPO-N, TPI-N, and HPI in the bottom soil (75-150 cm). Total Φ T, n values, which were calculated as [Formula: see text], suggested an accumulation of fluorescent organic matter in the upper 75 cm of soil as a consequence of SAT operation. The distribution of volumetric fluorescence among five regions (i.e., P i, n ) results revealed that SAT caused the increased content of humic-like fluorophores as well as the decreased content of protein-like fluorophores in both HPO-A and TPI-A in soils.


Asunto(s)
Agua Subterránea/química , Suelo/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Modelos Químicos , Espectrometría de Fluorescencia
6.
Water Res ; 43(2): 499-507, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18995878

RESUMEN

Soil column experiments were performed to investigate the behavior and characteristics of dissolved organic matter (DOM) during soil aquifer treatment (SAT), and to differentiate among the mechanisms responsible for the changes in the structural and functional properties of DOM during SAT. To determine the biological transformation of DOM, biodegradability tests using a biodegradation-column system were conducted. DOM was fractionated using XAD resins into 5 fractions: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). Dissolved organic carbon (DOC) was removed by 70% during SAT, and the sorption and anaerobic biodegradation in SAT led to a DOC reduction of 27.4%. The significant changes in fluorescence properties of DOM were observed during SAT. However, the sorption and anaerobic biodegradation in SAT seemed to have no significant effect on the chemical structure of fluorescing constituents in DOM. The DOM fractions exhibited different changes in Fourier-transform infrared (FT-IR) spectra characteristics during SAT. Biodegradation resulted in the enrichment of aromatic structures and the decreased content of the oxygen-containing functional groups, such as CO and C-O, in DOM. On the other hand, the production of C-O and amide-2 functional groups occurred as a result of the sorption combined with anaerobic biodegradation in SAT.


Asunto(s)
Compuestos Orgánicos , Suelo , Purificación del Agua , Abastecimiento de Agua , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA