Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 241: 115980, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266455

RESUMEN

Ovariectomy (OVX) is usually accompanied by the occurrence of metabolic syndrome. Previous studies have shown that Geng-Nian-Shu (GNS) plays an important regulatory role in perimenopausal syndrome (PMS) rats. GNS is a traditional Chinese medicine (TCM) prescription which composed of Suanzaoren Decoction and Ganmai Dazao Decoction in "Jingui Yaolue" and Siwu Decoction in "Heji Jufang". Recently, metabolomics analysis has been used to identify slight changes in the metabolic profile and to help understand disease progression and therapeutic interventions in PMS. However, the mechanism of GNS in the treatment of PMS is still unknown. We purposed to study the metabolic characteristics of PMS by serum and fecal metabolomics, and revealed the internal mechanism of GNS regulating ferroptosis against PMS. The PMS model was established by surgical removal of 4/5 ovaries of rats. HPLC-Q-TOF/MS was used to analyze the metabolomics of rat plasma and feces to explore the potential mechanism of GNS in PMS. The expression of ferroptosis-related proteins in rat ovaries was detected by tissue Prussian blue staining, Elisa kit and Western blotting. Cluster analysis of differential metabolites in plasma and feces between the control group and the model group showed that organic acids and their derivatives, lipids and lipid molecules were mainly disturbed during PMS in rats. After GNS administration, 17 differential metabolites were adjusted, involving several major pathways, such as the tricarboxylic acid (TCA) cycle, biosynthesis of amino acids and biosynthesis of unsaturated fatty acids. Further, we found that GNS affected ferroptosis in ovarian cells by regulating endogenous substances in OVX rats. Our study provides new insights into the mechanism of OVX-induced metabolic syndrome based on non-targeted metabolomics. It provides new ideas for the development and application of GNS and the diagnosis and treatment of PMS.


Asunto(s)
Medicamentos Herbarios Chinos , Ferroptosis , Síndrome Metabólico , Femenino , Ratas , Animales , Perimenopausia , Metabolómica , Metaboloma , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
Animals (Basel) ; 12(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36552494

RESUMEN

The continuous ovulation of laying hens during the peak period is likely to cause oxidative stress, resulting in a reduction in the laying cycle over time. The aim of this study was to evaluate the antioxidant effects of Aronia melanocarpa (AM) in the diet and its effect on the yolk precursor content caused by ovulation in laying hens during the peak period. A total of 300 25-week-old Roman brown laying hens were randomly divided into five groups with six replicates in each group, 10 in each replicate. The control group was fed a basal diet, the positive control group was fed a Vitamin C (VC) plus basal diet, and the experimental group was fed 1%, 4%, and 7% doses of AM plus diet according to the principle of energy and nitrogen requirements, which lasted eight weeks. At the end of the study, the egg quality, biochemical, and antioxidant markers, as well as mRNA and protein expressions, were evaluated to determine the potential signaling pathways involved. Results showed that the addition of AM to the feed increased the weight of laying hens at the peak of egg production and improved egg quality. The biochemical markers, as well as the antioxidant parameters in the serum, liver, and ovarian tissues, were ameliorated. The gene and protein expression of recombinant kelch-like ECH-associated protein 1 (Keap1) in the liver and ovarian tissues was decreased, while nuclear factor erythroid-2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression was increased. The feed supplemented with AM also increased the estrogen contents and lipid parameters, as well as the gene and protein expressions related to the yolk precursor. Feed supplemented with AM could improve the egg quality and the oxidative stress caused by the ovulation process of laying hens during the peak egg production period by activating the Keap1/Nrf2 signaling pathway. These results suggest that the feed supplemented with 1% AM and 4% AM can improve egg production in peak laying hens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA