Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 913: 169743, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38163595

RESUMEN

Petroleum hydrocarbon (PH) pollution threatens both wild and farmed marine fish. How this pollution affects the nutrient metabolism in fish and whether this effect can be recovered have not been well-known. The present study aimed to evaluate these effects with a feeding trial on tiger puffer, an important farmed species in Asia. In a 6-week feeding trial conducted in indoor flow-through water, fish were fed a control diet (C) or diets supplemented with diesel oil (0.02 % and 0.2 % of dry matter, named LD and HD, respectively). Following this feeding trial was a 4-week recovery period, during which all fish were fed a same normal commercial feed. At the end of the 6-week feeding trial, dietary PH significantly decreased the fish growth and lipid content. The PH significantly accumulated in fish tissues, in particular the liver, and caused damages in all tissues examined in terms of histology, anti-oxidation status, and serum biochemical changes. Dietary PH also changed the volatile flavor compound profile in the muscle. The hepatic transcriptome assay showed that the HD diet tended to inhibit the DNA replication, cell cycle and lipid synthesis, but to stimulate the transcription of genes related to liver protection/repair and lipid catabolism. The 4-week recovery period to some extent mitigated the damage caused by PH. After the recovery period, the inter-group differences in some parameters disappeared. However, the differences in lipid content, anti-oxidase activity, liver PH concentration, and histological structure still existed. In addition, differences in cellular chemical homeostasis and cytokine-cytokine receptor interaction at the transcriptional level can still be observed, indicated by the hepatic transcriptome assay. In conclusion, 6 weeks of dietary PH exposure significantly impaired the growth performance and health status of farmed tiger puffer, and a short-term recovery period (4 weeks) was not sufficient to completely mitigate this impairment.


Asunto(s)
Petróleo , Takifugu , Animales , Takifugu/metabolismo , Peces , Hidrocarburos/metabolismo , Petróleo/metabolismo , Lípidos , Hígado/metabolismo
2.
Mar Drugs ; 21(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36827163

RESUMEN

Booming fish farming results in a relative shortage of fish oil (FO) supply, meaning that alternative oils are increasingly used in fish feeds, which leads to reduction of long-chain polyunsaturated fatty acids (LC-PUFAs) and other relevant changes in fish products. This study investigated the efficacy of an FO-finishing strategy in recovering the muscle quality of farmed tiger puffer. An eight-week feeding trial (growing-out period) was conducted with five experimental diets, in which graded levels (0 (control), 25, 50, 75, and 100%) of added FO were replaced by poultry oil (PO). Following the growing-out period was a four-week FO-finishing period, during which fish in all groups were fed the control diet. Dietary PO significantly decreased the muscle LC-PUFA content, whereas in general, the FO-finishing strategy recovered it to a level comparable with that of the group fed FO continuously. The recovery efficiency of EPA was higher than that of DHA. Dietary PO also led to changes of volatile flavor compounds in the muscle, such as butanol, pentenal, and hexenal, whereas the FO-finishing strategy mitigated the changes. In conclusion, the FO-finishing strategy is promising in recovering the LC-PUFA and volatile-flavor-compound composition in farmed tiger puffer after the feeding of PO-based diets.


Asunto(s)
Grasas Insaturadas en la Dieta , Aceites de Pescado , Animales , Alimentación Animal/análisis , Dieta , Ácidos Grasos , Músculos , Aceites de Plantas , Takifugu
3.
Food Res Int ; 151: 110905, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980369

RESUMEN

The present study was aimed at investigating the interactive effects of starvation and dietary lipid level in the previous feeding period on lipid-related composition of turbot. Turbot with an average initial body weight of 26 g were firstly fed diets with different lipid levels, namely, 8%, 12%, and 16%, for 9 weeks, and then subjected to starvation for 30 days. Each diet was fed to sextuplicate tanks of 35 fish in the feeding trial. Tissue samples were collected at the end of the feeding trial and at 10, 20, and 30 days after starvation. The results showed that 30-day starvation decreased the lipid content in the liver and the subcutaneous tissue around the fin (STF), but increased the lipid content in the muscle. A synergetic increase of muscle lipid by starvation and dietary lipid level was observed. Starvation mobilized different fatty acids among the three tissues, namely, MUFA (16:1n-7 and 18:1n-9) in the muscle, SFA (14:0 and 16:0), MUFA (16:1n-7, 18:1n-9 and 20:1n-9), and 18C-PUFA (18:2n-6 and 18:3n-3) in the liver, and unexpectedly n-3 PUFA (18:3n-3, EPA, and DHA) in the STF, respectively. The 30-day starvation decreased the muscle hardness and resilience, but affected other texture parameters in a starvation time-dependent manner. Up-regulation of expression of lipolytic genes by starvation occurred later in the STF than in the liver. Interactive effects of starvation and dietary lipid level were observed mainly on tissue fatty acid compositions. Results of this study suggested that combined manipulation of starvation time and dietary lipid level could be used as an effective means of fish quality regulation in terms of lipid/fatty acid-related composition.


Asunto(s)
Ácidos Grasos , Peces Planos , Animales , Grasas de la Dieta , Ácidos Grasos Insaturados , Hígado
4.
Fish Physiol Biochem ; 46(5): 1795-1807, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32514852

RESUMEN

This study was conducted to evaluate the effects of different dipeptides (lysine-leucine, lysine-glycine, and leucine-glycine) and free amino acids (lysine and leucine) on the growth, gene expression of intestinal peptide and amino acid transporters, and serum free amino acid concentrations in turbot. Fish (11.98 ± 0.03 g) were fed four experimental diets supplementing with crystalline amino acids (CAA), lysine-leucine (Lys-Leu), lysine-glycine (Lys-Gly), and leucine-glycine (Gly-Leu). Fish protein hydrolysate (FPH) containing a mixture of free amino acids and small peptides was designed as a positive control diet. There was no significant difference in the growth and feed utilization among three dipeptide diets (Lys-Leu, Lys-Gly, and Gly-Leu). Compared with the CAA group, feed efficiency ratio was significantly higher in the Lys-Leu and Lys-Gly groups, and protein efficiency ratio was significantly higher in the Lys-Leu group. For peptide transporter, oligopeptide transporter 1 (PepT1) mRNA level was not affected by dietary treatments. For amino acid transporters, lower expression of B0 neutral amino acid transporter 1 (B0AT1) and proton-coupled amino acid transporter 1 (PAT1) were observed in fish fed the dipeptide and FPH diets compared with the CAA diet. In conclusion, juvenile turbot fed Lys-Leu, Gly-Leu, and Lys-Gly had a similar growth performance, whereas lysine and leucine in the Lys-Leu form can be utilized more efficiently for feed utilization than those in free amino acid from. In addition, compared to free amino acids, dipeptides and fish protein hydrolysate in diets may down-regulate the expression of amino acid transporters but did not affect the expression of PepT1.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Peces , Leucina , Lisina , Animales , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Suplementos Dietéticos , Peces/crecimiento & desarrollo , Regulación de la Expresión Génica/efectos de los fármacos , Leucina/administración & dosificación , Leucina/farmacología , Lisina/administración & dosificación , Lisina/farmacología
5.
Fish Physiol Biochem ; 46(4): 1603-1619, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32415410

RESUMEN

The tissue distribution pattern of lipid is highly diverse among different fish species. Tiger puffer has a special lipid storage pattern, storing lipid predominantly in liver. In order to better understand the lipid physiology in fish storing lipid in liver, the present study preliminarily investigated the tissue distribution of transcription for 29 lipid metabolism-related genes in tiger puffer, which are involved in lipogenesis, fatty acid oxidation, biosynthesis and hydrolysis of glycerides, lipid transport, and relevant transcription regulation. Samples of eight tissues, brain, eye, heart, spleen, liver, intestine, skin, and muscle, from fifteen juvenile tiger puffer were used in the qRT-PCR analysis. The intestine and brain had high transcription of lipogenic genes, whereas the liver and muscle had low expression levels. The intestine also had the highest transcription level of most apolipoproteins and lipid metabolism-related transcription factors. The transcription of fatty acid ß-oxidation-related genes was low in the muscle. The peroxisomal fatty acid oxidation may dominate over mitochondrial ß-oxidation in the liver and intestine of tiger puffer, and the MAG pathway probably predominates over the G3P pathway in re-acylation of absorbed lipids in the intestine. The intracellular glyceridases were highly transcribed in the brain, eye, and heart. In conclusion, in tiger puffer, the intestine could be a center of lipid metabolism whereas the liver is more likely a pure storage organ for lipid. The lipid metabolism in the muscle could also be inactive, possibly due to the very low level of intramuscular lipid.


Asunto(s)
Metabolismo de los Lípidos/genética , Hígado/metabolismo , Takifugu/genética , Animales , Apolipoproteínas/metabolismo , Encéfalo/metabolismo , ADN Complementario/metabolismo , Ácidos Grasos/metabolismo , Glicéridos/metabolismo , Corazón , Intestinos/fisiología , Miocardio/metabolismo , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Takifugu/metabolismo , Distribución Tisular , Transcripción Genética
6.
Br J Nutr ; 123(12): 1345-1356, 2020 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31959268

RESUMEN

Taurine (TAU) plays important roles in the metabolism of bile acids, cholesterol and lipids. However, little relevant information has been available in fish where TAU has been identified as a conditionally essential nutrient. The present study aimed to investigate the effects of dietary TAU on the metabolism of bile acids, cholesterol and lipids in tiger puffer, which is both an important aquaculture species and a good research model, having a unique lipid storage pattern. An 8-week feeding trial was conducted in a flow-through seawater system. Three experimental diets differed only in TAU level, that is, 1·7, 8·2 and 14·0 mg/kg. TAU supplementation increased the total bile acid content in liver but decreased the content in serum. TAU supplementation also increased the contents of total cholesterol and HDL-cholesterol in both liver and serum. The hepatic bile acid profile mainly includes taurocholic acid (94·48 %), taurochenodeoxycholic acid (4·17 %) and taurodeoxycholic acid (1·35 %), and the contents of all these conjugated bile acids were increased by dietary TAU. The hepatic lipidomics analysis showed that TAU tended to decrease the abundance of individual phospholipids and increase those of some individual TAG and ceramides. The hepatic mRNA expression study showed that TAU stimulated the biosynthesis of both bile acids and cholesterol, possibly via regulation of farnesoid X receptor and HDL metabolism. TAU also stimulated the hepatic expression of lipogenic genes. In conclusion, dietary TAU stimulated the hepatic biosynthesis of both bile acids and cholesterol and tended to regulate lipid metabolism in multiple ways.


Asunto(s)
Ácidos y Sales Biliares/biosíntesis , Colesterol/biosíntesis , Hígado/efectos de los fármacos , Takifugu/metabolismo , Taurina/farmacología , Alimentación Animal/análisis , Animales , Suplementos Dietéticos
7.
Artículo en Inglés | MEDLINE | ID: mdl-30677513

RESUMEN

Methionine (Met) is one of the most important amino acids in fish feed. The effects of dietary Met on lipid deposition in fish varied a lot among different studies. The present study was aimed at investigating the effects of dietary Met supplementation on the lipid accumulation in tiger puffer, which have a unique lipid storage pattern. Crystalline L-Met was supplemented to a low-fishmeal control diet to obtain two experimental diets with a low (1.1% of dry weight, L-MET) or high Met level (1.6% of dry weight, H-MET). A 67-day feeding trial was conducted with juvenile tiger puffer (average initial weight, 13.83 g). Each diet was fed to triplicate tanks (30 fish in each tank). The results showed that the total lipid contents in whole-body and liver significantly increased with increasing dietary Met levels. The hepatosomatic index, weight gain, and total bile acid content in serum showed similar patterns in response to dietary Met treatments, while the lipid content in muscle was not affected. The hepatic contents of 18-carbon fatty acids were elevated by dietary Met supplementation. The Hepatic mRNA expression of lipogenetic gene such as FAS, GPAT, PPARγ, ACLY, and SCD1 was down-regulated, while the gene expression of lipolytic genes ACOX1 and HSL, as well as that of ApoB100, were up-regulated by increasing dietary Met levels. The hepatic lipidomics of experimental fish was also analyzed. In conclusion, increasing dietary Met levels (0.61%, 1.10%, and 1.60%) increased the hepatic lipid accumulation in tiger puffer. The mechanisms involved warrant further studies.


Asunto(s)
Dieta , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Metionina/administración & dosificación , Takifugu/metabolismo , Envejecimiento , Animales , Suplementos Dietéticos , Takifugu/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA