RESUMEN
The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/ß-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Uniones Adherentes/metabolismo , Artritis/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas del Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Artritis/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Cadherinas/metabolismo , Proteínas del Citoesqueleto/genética , Femenino , Proteínas de Homeodominio , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos , beta Catenina/metabolismoRESUMEN
Glucocorticoids (GCs) constitute a highly pleiotropic class of drugs predominantly employed in the treatment of inflammatory diseases. In our search for new mechanisms of action, we identified a hitherto unknown effect of GCs in the gastrointestinal tract. We found that oral administration of dexamethasone (Dex) to mice caused an enlargement of the stomach due to the induction of gastroparesis and that this effect was abolished in GR(dim) mice carrying the A458T mutation in the GC receptor (GR). Gastroparesis was unrelated to the enhanced gastric acid secretion observed after Dex treatment, although both effects were mediated by the same molecular mechanism of the GR. Using conditional GR-knockout mice, we could further rule out that GC effects on enterocytes or myeloid cells were involved in the induction of gastroparesis. In contrast, we found that Dex upregulated arginase 2 (Arg2) in the stomach both at the mRNA and protein level. This suggests that GC treatment leads to a depletion of l-arginine thereby impeding the production of nitric oxide (NO), which is required for gastric motility. We tested this hypothesis by supplementing the drinking water of the mice with exogenous l-arginine to compensate for the presumed shortage of this major substrate of NO synthases. Importantly, this measure completely prevented both the enlargement of the stomach and the induction of gastroparesis after Dex treatment. Our findings raise considerations of combining orally applied GCs with l-arginine to improve tolerability of GC treatment and provide a possible explanation for the antiemetic effects of GCs widely exploited in chemotherapy.