RESUMEN
The rapidly developing resistance of cancers to chemotherapy agents and the severe cytotoxicity of such agents to normal cells are major stumbling blocks in current cancer treatments. Most current chemotherapy agents have significant cytotoxicity, which leads to devastating adverse effects and results in a substandard quality of life, including increased daily morbidity and premature mortality. The death receptor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can sidestep p53-dependent pathways to induce tumor cell apoptosis without damaging most normal cells. However, various cancer cells can develop resistance to TRAIL-induced apoptosis via different pathways. Therefore, it is critical to find an efficient TRAIL sensitizer to reverse the resistance of tumor cells to TRAIL, and to reinforce TRAIL's ability to induce tumor cell apoptosis. In recent years, traditional Chinese medicines and their active ingredients have shown great potential to trigger apoptotic cell death in TRAIL-resistant cancer cell lines. This review aims to collate information about Chinese medicines that can effectively reverse the resistance of tumor cells to TRAIL and enhance TRAIL's ability to induce apoptosis. We explore the therapeutic potential of TRAIL and provide new ideas for the development of TRAIL therapy and the generation of new anti-cancer drugs for human cancer treatment. This study involved an extensive review of studies obtained from literature searches of electronic databases such as Google Scholar and PubMed. "TRAIL sensitize" and "Chinese medicine" were the search keywords. We then isolated newly published studies on the mechanisms of TRAIL-induced apoptosis. The name of each plant was validated using certified databases such as The Plant List. This study indicates that TRAIL can be combined with different Chinese medicine components through intrinsic or extrinsic pathways to promote cancer cell apoptosis. It also demonstrates that the active ingredients of traditional Chinese medicines enhance the sensitivity of cancer cells to TRAIL-mediated apoptosis. This provides useful information regarding traditional Chinese medicine treatment, the development of TRAIL-based therapies, and the treatment of cancer.
Asunto(s)
Apoptosis/efectos de los fármacos , Medicina Tradicional China , Neoplasias/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Bencilisoquinolinas/uso terapéutico , Clematis , Diterpenos/uso terapéutico , Humanos , Isoflavonas/uso terapéutico , Neoplasias/patologíaRESUMEN
Objective This study aimed to investigate the role of zinc sulphate in immune regulation in Artemisia annua pollen-challenged P815 mastocytoma cells. Methods P815 mastocytoma cells were treated with various concentrations of zinc sulphate and Artemisia annua pollen. Cell proliferation was measured using the Cell Counting Kit-8. The amount of ST2 and p38 in the cells were measured using Western blotting. The level of interleukins (IL)-33 in the supernatant was determined using the enzyme-linked immunosorbent assay. The levels of IL-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor were measured using the cytometric bead array. Results Artemisia annua pollen at a concentration >0.001 µg/mL induced allergic response in the P815 mastocytoma cells. Expressions of IL-33, IL-4, ST2, and p38 increased along with higher concentrations of Artemisia annua pollen. Zinc sulphate of 50-200 µmol/L promoted the proliferation of P815 mastocytoma cells. Zinc sulphate attenuated the upregulation of IL-33, IL-4, ST2, and p38 caused by Artemisia annua pollen. Conclusion Zinc sulphate can promote the proliferation of P815 mastocytoma cells. It can also attenuate allergic response in the P815 mastocytoma cells induced by Artemisia annua pollen, which might provide a new treatment method for allergic diseases.