Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Lett ; 387: 50-62, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37741353

RESUMEN

Acetaminophen is a common analgesic and fever reduction medicine for pregnant women. Epidemiological studies suggest that prenatal acetaminophen exposure (PAcE) affects offspring health and development. However, the effects of PAcE on fetal long bone development and its potential mechanisms have not been elucidated. Based on clinical dosing characteristics, fetal mouse femurs were obtained for detection after oral gavage of acetaminophen at different doses (0, 100 or 400 mg/kg d), courses (single or multiple times) or stages (mid- or late pregnancy) during pregnancy in Kunming mice. The results showed that compared with the control group, PAcE reduced the length of total femur and the primary ossification center (POC), delayed the mineralization of POC and the ossification of epiphyseal region, and down-regulated the mRNA expression of osteogenic function markers (such as Runx2, Bsp, Ocn , Col1a1) in fetal femur, particularly in the high dose, multiple courses, and mid-pregnancy group. Meanwhile, the osteoclast and angiogenic function were also inhibited by PAcE at high dose, multiple courses, and mid-pregnancy, but the inhibition level was less than osteogenic function. Moreover, the alteration of canonical Wnt signalling pathway in PAcE fetal bone were consistent with its osteogenesis function changes. In conclusion, PAcE caused development toxicity and multi-cellular function inhibition in fetal long bone, particularly in the high dose, multiple treatments and mid-pregnancy group, and the alteration of canonical Wnt signalling pathway may be its potential mechanism.


Asunto(s)
Acetaminofén , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratones , Embarazo , Femenino , Animales , Acetaminofén/toxicidad , Desarrollo Fetal , Osteogénesis , Huesos
2.
Mol Med Rep ; 25(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34796908

RESUMEN

Prenatal food restriction (PFR) induces dysfunction of the hypothalamic­pituitary­adrenal (HPA) axis in the adult offspring. The aim of the present study was to identify the underlying mechanism of this process. Pregnant rats were placed on a restricted diet between gestational day 11 and 21. The offspring were fed with a high­fat diet and were subjected to unpredictable chronic stress (UCS) from postnatal week 17 to 20. A higher serum corticosterone (CORT) level was observed in the PFR fetuses. Although lower arginine vasopressin (AVP), hippocampal vesicular glutamate transporter 2 (vGLUT2) and glutamic acid decarboxylase 65 (GAD65) mRNA expression levels were detected in the hippocampi of PFR fetuses, the ratio of the mRNA expression levels of vGLUT2 and GAD65 was higher compared with that of the controls, which was accompanied by histopathological and ultrastructural abnormalities of both the hypothalamus and hippocampus. However, there were no marked changes in the hippocampal expression levels of glucocorticoids receptor (GR) and mineralocorticoids receptor (MR) or the ratio of MR/GR ratio. After the fetuses had matured, lower serum CORT and adrenocorticotropic hormone (ACTH) levels were observed in PFR rats without UCS when compared with the control. A higher rise rate of serum ACTH was also observed after UCS when compared with that in rats without UCS. Furthermore, the hypothalamic mRNA expression level of corticotrophin­releasing hormone (CRH) was lower in PFR rats without UCS, while expression levels of CRH, AVP, GAD65 and vGLUT2 were enhanced after UCS when compared with the control, accompanied by an increased vGLUT2/GAD65 expression ratio. MR mRNA expression was lower, and GR mRNA expression was higher in the hippocampus of the PFR rats without UCS when compared with the control. However, the mRNA expression levels of both MR and GR in the PFR rats were higher compared with those of the control after UCS, which was accompanied histopathological changes in the dentate gyrus, cornu ammonis (CA1) and CA3 areas. In summary, it was suggested that PFR induced fetal alterations of the HPA axis manifesting as hypothalamic hyperexcitability and poor hippocampal feedback, which persisted to adulthood and affected the behavior of the rat offspring.


Asunto(s)
Desarrollo Fetal , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Animales , Corticosterona , Hormona Liberadora de Corticotropina/metabolismo , Dieta Alta en Grasa , Femenino , Masculino , Neurofisinas , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Precursores de Proteínas , Ratas , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Vasopresinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA