Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(42): 11229-11234, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973916

RESUMEN

Worldwide medicinal use of cannabis is rapidly escalating, despite limited evidence of its efficacy from preclinical and clinical studies. Here we show that cannabidiol (CBD) effectively reduced seizures and autistic-like social deficits in a well-validated mouse genetic model of Dravet syndrome (DS), a severe childhood epilepsy disorder caused by loss-of-function mutations in the brain voltage-gated sodium channel NaV1.1. The duration and severity of thermally induced seizures and the frequency of spontaneous seizures were substantially decreased. Treatment with lower doses of CBD also improved autistic-like social interaction deficits in DS mice. Phenotypic rescue was associated with restoration of the excitability of inhibitory interneurons in the hippocampal dentate gyrus, an important area for seizure propagation. Reduced excitability of dentate granule neurons in response to strong depolarizing stimuli was also observed. The beneficial effects of CBD on inhibitory neurotransmission were mimicked and occluded by an antagonist of GPR55, suggesting that therapeutic effects of CBD are mediated through this lipid-activated G protein-coupled receptor. Our results provide critical preclinical evidence supporting treatment of epilepsy and autistic-like behaviors linked to DS with CBD. We also introduce antagonism of GPR55 as a potential therapeutic approach by illustrating its beneficial effects in DS mice. Our study provides essential preclinical evidence needed to build a sound scientific basis for increased medicinal use of CBD.


Asunto(s)
Cannabidiol/uso terapéutico , Epilepsias Mioclónicas/tratamiento farmacológico , Convulsiones/prevención & control , Animales , Compuestos de Azabiciclo , Benzoatos , Cannabidiol/farmacología , Giro Dentado/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/psicología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Masculino , Ratones , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides/metabolismo , Convulsiones/etiología , Conducta Social
2.
Neurobiol Dis ; 77: 141-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25766678

RESUMEN

Dravet Syndrome (DS) is caused by heterozygous loss-of-function mutations in voltage-gated sodium channel NaV1.1. Our mouse genetic model of DS recapitulates its severe seizures and premature death. Sleep disturbance is common in DS, but its mechanism is unknown. Electroencephalographic studies revealed abnormal sleep in DS mice, including reduced delta wave power, reduced sleep spindles, increased brief wakes, and numerous interictal spikes in Non-Rapid-Eye-Movement sleep. Theta power was reduced in Rapid-Eye-Movement sleep. Mice with NaV1.1 deleted specifically in forebrain interneurons exhibited similar sleep pathology to DS mice, but without changes in circadian rhythm. Sleep architecture depends on oscillatory activity in the thalamocortical network generated by excitatory neurons in the ventrobasal nucleus (VBN) of the thalamus and inhibitory GABAergic neurons in the reticular nucleus of the thalamus (RNT). Whole-cell NaV current was reduced in GABAergic RNT neurons but not in VBN neurons. Rebound firing of action potentials following hyperpolarization, the signature firing pattern of RNT neurons during sleep, was also reduced. These results demonstrate imbalance of excitatory vs. inhibitory neurons in this circuit. As predicted from this functional impairment, we found substantial deficit in homeostatic rebound of slow wave activity following sleep deprivation. Although sleep disorders in epilepsies have been attributed to anti-epileptic drugs, our results show that sleep disorder in DS mice arises from loss of NaV1.1 channels in forebrain GABAergic interneurons without drug treatment. Impairment of NaV currents and excitability of GABAergic RNT neurons are correlated with impaired sleep quality and homeostasis in these mice.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/patología , Interneuronas/patología , Trastornos del Sueño-Vigilia/etiología , Tálamo/patología , Factores de Edad , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Epilepsias Mioclónicas/genética , Neuronas GABAérgicas/patología , Glutamato Descarboxilasa/metabolismo , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Técnicas de Placa-Clamp , Privación de Sueño/fisiopatología , Grabación en Video , Vigilia/genética
3.
Neurobiol Dis ; 73: 106-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25281316

RESUMEN

Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1(+/-) Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. These mice also have a higher threshold for thermally induced seizures, fewer myoclonic seizures, and no cognitive impairment, similar to patients with Genetic Epilepsy with Febrile Seizures Plus. Consistent with this mild phenotype, mutation of NaV1.1 channels has much less physiological effect on neuronal excitability in 129/SvJ mice. In hippocampal slices, the excitability of CA1 Stratum Oriens interneurons is selectively impaired, while the excitability of CA1 pyramidal cells is unaffected. NaV1.1 haploinsufficiency results in increased rheobase and threshold for action potential firing and impaired ability to sustain high-frequency firing. Moreover, deletion of NaV1.1 markedly reduces the amplification and integration of synaptic events, further contributing to reduced excitability of interneurons. Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Inhibición Neural/genética , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/genética , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/etiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Miedo/psicología , Hipocampo/citología , Hipertermia Inducida/efectos adversos , Técnicas In Vitro , Lidocaína/análogos & derivados , Lidocaína/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Bloqueadores de los Canales de Sodio/farmacología
4.
Proc Natl Acad Sci U S A ; 100(5): 2813-8, 2003 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-12601155

RESUMEN

Fast cholinergic neurotransmission between superior cervical ganglion neurons (SCGNs) in cell culture is initiated by N-type Ca(2+) currents through Ca(v)2.2 channels. To test the ability of different Ca(2+)-channel subtypes to initiate synaptic transmission in these cells, SCGNs were injected with cDNAs encoding Ca(v)1.2 channels, which conduct L-type currents, Ca(v)2.1 channels, which conduct P/Q-type Ca(2+) currents, and Ca(v)2.3 channels, which conduct R-type Ca(2+) currents. Exogenously expressed Ca(v)2.1 channels were localized in nerve terminals, as assessed by immunocytochemistry with subtype-specific antibodies, and these channels effectively initiated synaptic transmission. Injection with cDNA encoding Ca(v)2.3 channels yielded a lower level of presynaptic labeling and synaptic transmission, whereas injection with cDNA encoding Ca(v)1.2 channels resulted in no presynaptic labeling and no synaptic transmission. Our results show that exogenously expressed Ca(2+) channels can mediate synaptic transmission in SCGNs and that the specificity of reconstitution of neurotransmission (Ca(v)2.1 > Ca(v)2.3 >> Ca(v)1.2) follows the same order as in neurons in vivo. The specificity of reconstitution of neurotransmission parallels the specificity of trafficking of these Ca(v) channels to nerve terminals.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Transporte de Catión , Ganglios Simpáticos/metabolismo , Sinapsis/fisiología , Agatoxinas , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo R , Células Cultivadas , ADN Complementario/metabolismo , Glutatión Transferasa/metabolismo , Inmunohistoquímica , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Venenos de Araña/metabolismo , Factores de Tiempo
5.
Proc Natl Acad Sci U S A ; 100(5): 2819-24, 2003 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-12601156

RESUMEN

Ca(v)2.1 channels, which conduct P/Q-type Ca(2+) currents, were expressed in superior cervical ganglion neurons in cell culture, and neurotransmission initiated by these exogenously expressed Ca(2+) channels was measured. Deletions in the synaptic protein interaction (synprint) site in the intracellular loop between domains II and III of Ca(v)2.1 channels reduced their effectiveness in synaptic transmission. Surprisingly, this effect was correlated with loss of presynaptic localization of the exogenously expressed channels. Ca(v)1.2 channels, which conduct L-type Ca(2+) currents, are ineffective in supporting synaptic transmission, but substitution of the synprint site from Ca(v)2.1 channels in Ca(v)1.2 was sufficient to establish synaptic transmission initiated by L-type Ca(2+) currents through the exogenous Ca(v)1.2 channels. Substitution of the synprint site from Ca(v)2.2 channels, which conduct N-type Ca(2+) currents, was even more effective than Ca(v)2.1. Our results show that localization and function of exogenous Ca(2+) channels in nerve terminals of superior cervical ganglion neurons require a functional synprint site and suggest that binding of soluble NSF attachment protein receptor (SNARE) proteins to the synprint site is a necessary permissive event for nerve terminal localization of presynaptic Ca(2+) channels.


Asunto(s)
Canales de Calcio Tipo L/química , Canales de Calcio Tipo N/química , Sinapsis/fisiología , Proteínas de Transporte Vesicular , Sitios de Unión , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/metabolismo , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Electrofisiología , Exones , Eliminación de Gen , Vectores Genéticos , Immunoblotting , Intrones , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Mutación , Isoformas de Proteínas , Estructura Terciaria de Proteína , Proteínas SNARE , Factores de Tiempo , Transfección
6.
J Neurosci Res ; 67(1): 48-61, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11754080

RESUMEN

The localization of voltage-gated calcium channel (VGCC) alpha(1) subunits in cultured GABAergic mouse cortical neurons was examined by immunocytochemical methods. Ca(v)1.2 and Ca(v)1.3 subunits of L-type VGCCs were found in cell bodies and dendrites of GABA-immunopositive neurons. Likewise, the Ca(v)2.3 subunit of R-type VGCCs was expressed in a somatodendritic pattern. Ca(v)2.2 subunits of N-type channels were found exclusively in small varicosities that were identified as presynaptic nerve terminals based on their expression of synaptic marker proteins. Two splice variants of the Ca(v)2.1 subunit of P/Q-type VGCCs showed widely differing expression patterns. The rbA isoform displayed a purely somatodendritic staining pattern, whereas the BI isoform was confined to axon-like fibers and nerve terminals. The nerve terminals of these cultured GABAergic neurons express Ca(v)2.2 either alone or in combination with Ca(v)2.1 (BI isoform) but never express Ca(v)2.1 alone. The functional association between VGCCs and the neurotransmitter release machinery was probed using the FM1-43 dye-labeling technique. N-type VGCCs were found to be tightly coupled to exocytosis in these cultured cortical neurons, and P-type VGCCs were also important in a fraction of the cells. The predominant role of N-type VGCCs in neurotransmitter release and the specific localization of the BI isoform of Ca(v)2.1 in the nerve terminals of these neurons distinguish them from previously studied central neurons. The complementary localization patterns observed for two different isoforms of the Ca(v)2.1 subunits provide direct evidence for alternative splicing as a means of generating functional diversity among neuronal calcium channels.


Asunto(s)
Canales de Calcio/metabolismo , Corteza Cerebral/metabolismo , Interneuronas/metabolismo , Inhibición Neural/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Empalme Alternativo/fisiología , Animales , Canales de Calcio Tipo N/metabolismo , Compartimento Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Dendritas/metabolismo , Dendritas/ultraestructura , Femenino , Feto , Inmunohistoquímica , Interneuronas/citología , Ratones , Embarazo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA