Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10381-10392, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573229

RESUMEN

DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.


Asunto(s)
Adenina/análogos & derivados , Dioxigenasas , Ácidos Cetoglutáricos , Humanos , Dioxigenasas/metabolismo , ADN/química , Reparación del ADN , Compuestos Ferrosos , Aductos de ADN , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo
2.
J Phys Chem A ; 123(29): 6229-6240, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31241337

RESUMEN

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone is a potent nicotine-based carcinogen that generates many DNA lesions, including the HOCH2-C, HOCH2-G, and HOCH2-A hydroxymethyl adducts. Despite all lesions containing an altered exocyclic amino group, which allows the hydroxymethyl group to be directed away from the Watson-Crick binding face, only the most persistent adenine adduct is mutagenic. As a first step toward understanding this differential mutagenicity, density functional theory (DFT) and molecular dynamics (MD) simulations were used to gain atomic-level structural details of these DNA damage products. DFT calculations reveal that all three lesions exhibit conformational diversity. However, regardless of the hydroxymethyl-nucleobase orientation, both DFT and MD simulations highlight that HOCH2-C and HOCH2-G form pairs with the canonical complementary base (G and C, respectively) that are structural and energetically preferred over mispairs. In contrast, depending on the hydroxymethyl-nucleobase orientation, the Watson-Crick HOCH2-A:T pair can become significantly destabilized relative to undamaged A:T. As a result, HOCH2-A mispairs with G, C, and A are energetically accessible and maintain key geometrical features of canonical DNA. Overall, our data directly correlate with the reported differential mutagenicity of the hydroxylmethyl lesions and will encourage future studies to further uncover the cellular impact of the most persistent adenine lesion.


Asunto(s)
Aductos de ADN/química , Formaldehído/química , Adenina/química , Emparejamiento Base , Citosina/química , Aductos de ADN/genética , Teoría Funcional de la Densidad , Guanina/química , Enlace de Hidrógeno , Modelos Químicos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA