Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microbiome ; 11(1): 266, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008755

RESUMEN

BACKGROUND: Many studies have investigated how nanoplastics (NPs) exposure mediates nerve and intestinal toxicity through a dysregulated brain-gut axis interaction, but there are few studies aimed at alleviating those effects. To determine whether and how vitamin D can impact that toxicity, fish were supplemented with a vitamin D-low diet and vitamin D-high diet. RESULTS: Transmission electron microscopy (TEM) showed that polystyrene nanoplastics (PS-NPs) accumulated in zebrafish brain and intestine, resulting in brain blood-brain barrier basement membrane damage and the vacuolization of intestinal goblet cells and mitochondria. A high concentration of vitamin D reduced the accumulation of PS-NPs in zebrafish brain tissues by 20% and intestinal tissues by 58.8% and 52.2%, respectively, and alleviated the pathological damage induced by PS-NPs. Adequate vitamin D significantly increased the content of serotonin (5-HT) and reduced the anxiety-like behavior of zebrafish caused by PS-NPs exposure. Virus metagenome showed that PS-NPs exposure affected the composition and abundance of zebrafish intestinal viruses. Differentially expressed viruses in the vitamin D-low and vitamin D-high group affected the secretion of brain neurotransmitters in zebrafish. Virus AF191073 was negatively correlated with neurotransmitter 5-HT, whereas KT319643 was positively correlated with malondialdehyde (MDA) content and the expression of cytochrome 1a1 (cyp1a1) and cytochrome 1b1 (cyp1b1) in the intestine. This suggests that AF191073 and KT319643 may be key viruses that mediate the vitamin D reduction in neurotoxicity and immunotoxicity induced by PS-NPs. CONCLUSION: Vitamin D can alleviate neurotoxicity and immunotoxicity induced by PS-NPs exposure by directionally altering the gut virome. These findings highlight the potential of vitamin D to alleviate the brain-gut-virome disorder caused by PS-NPs exposure and suggest potential therapeutic strategies to reduce the risk of NPs toxicity in aquaculture, that is, adding adequate vitamin D to diet. Video Abstract.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Poliestirenos/metabolismo , Poliestirenos/toxicidad , Pez Cebra , Vitamina D/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Microplásticos/toxicidad , Microplásticos/metabolismo , Serotonina/metabolismo , Viroma , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Encéfalo , Citocromos/metabolismo
2.
J Agric Food Chem ; 71(44): 16493-16503, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37890448

RESUMEN

Phosphorus (P) is critical for crop production but has a high nutrient use inefficiency. Tomato was grown in soil amended with five P-sources, used as-is, or embedded within a biodegradable polymer, polyhydroxyalkanoate (PHA). Correlation analysis identified treatments that maintain plant growth, improve bioavailable soil P, and reduce P loss. Three performance classes were identified: (i) micro- and nanohydroxyapatite, which did not increase bioavailable P, plant P-uptake, or change P in runoff/leaching compared to controls; (ii) monocalcium phosphate (MCP), dicalcium phosphate (DCP), calcium pyrophosphate nanoparticles (CAP), and PHA-MCP that increased P-uptake and/or bioavailable P but also increased P loss in runoff/leaching; and (iii) PHA-DCP and PHA-CAP, where increased bioavailable P and plant P-uptake were achieved with minimal P loss in runoff/leaching. In addition to identifying treatments that maintain plant growth, increase bioavailable P, and minimize nutrient loss, correlation plots also revealed that (i) bioavailable P was a good indicator of plant P-uptake; (ii) leached P could be predicted from water solubility; and (iii) P loss through runoff versus leaching showed similar trends. This study highlights that biopolymers can promote plant P-uptake and improve bioavailable soil P, with implications for mitigating the negative environmental impacts of P loss from agricultural systems.


Asunto(s)
Fósforo , Suelo , Agricultura , Polímeros , Fertilizantes
3.
ACS Nano ; 17(14): 13672-13684, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37440420

RESUMEN

The use of nanotechnology to suppress crop diseases has attracted significant attention in agriculture. The present study investigated the antifungal mechanism by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) suppressed Fusarium-induced wilt disease in lettuce (Lactuca sativa). AVGE Se NPs were synthesized by utilizing sodium selenite as a Se source and AVGE as a biocompatible capping and reducing agent. Over 21 d, 2.75% of total AVGE Se NPs was dissolved into Se ions, which was more than 8-fold greater than that of bare Se NPs (0.34%). Upon exposure to soil applied AVGE Se NPs at 50 mg/kg, fresh shoot biomass was significantly increased by 61.6 and 27.8% over the infected control and bare Se NPs, respectively. As compared to the infected control, the shoot levels of citrate, isocitrate, succinate, malate, and 2-oxo-glutarate were significantly upregulated by 0.5-3-fold as affected by both Se NPs. In addition, AVGE Se NPs significantly increased the shoot level of khelmarin D, a type of coumarin, by 4.40- and 0.71-fold over infected controls and bare Se NPs, respectively. Additionally, AVGE Se NPs showed greater upregulation of jasmonic acid and downregulation of abscisic acid content relative to bare Se NPs in diseased shoots. Moreover, the diversity of bacterial endophytes was significantly increased by AVGE Se NPs, with the values of Shannon index 40.2 and 9.16% greater over the infected control and bare Se NPs. Collectively, these findings highlight the significant potential of AVGE Se NPs as an effective and biocompatible strategy for nanoenabled sustainable crop protection.


Asunto(s)
Aloe , Nanopartículas , Selenio , Selenio/farmacología , Lactuca/metabolismo , Aloe/metabolismo , Endófitos/metabolismo , Resistencia a la Enfermedad
4.
ACS Nano ; 17(4): 3574-3586, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36602915

RESUMEN

With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 µg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.


Asunto(s)
Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Humanos , Proteínas Portadoras , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Fósforo , Nanoestructuras
5.
ACS Nano ; 16(7): 11204-11217, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35792576

RESUMEN

Nanoscale sulfur can be a multifunctional agricultural amendment to enhance crop nutrition and suppress disease. Pristine (nS) and stearic acid coated (cS) sulfur nanoparticles were added to soil planted with tomatoes (Solanum lycopersicum) at 200 mg/L soil and infested with Fusarium oxysporum. Bulk sulfur, ionic sulfate, and healthy controls were included. Orthogonal end points were measured in two greenhouse experiments, including agronomic and photosynthetic parameters, disease severity/suppression, mechanistic biochemical and molecular end points including the time-dependent expression of 13 genes related to two S bioassimilation and pathogenesis-response, and metabolomic profiles. Disease reduced the plant biomass by up to 87%, but nS and cS amendment significantly reduced disease as determined by area-under-the-disease-progress curve by 54 and 56%, respectively. An increase in planta S accumulation was evident, with size-specific translocation ratios suggesting different uptake mechanisms. In vivo two-photon microscopy and time-dependent gene expression revealed a nanoscale-specific elemental S bioassimilation pathway within the plant that is separate from traditional sulfate accumulation. These findings correlate well with time-dependent metabolomic profiling, which exhibited increased disease resistance and plant immunity related metabolites only with nanoscale treatment. The linked gene expression and metabolomics data demonstrate a time-sensitive physiological window where nanoscale stimulation of plant immunity will be effective. These findings provide mechanistic understandings of nonmetal nanomaterial-based suppression of plant disease and significantly advance sustainable nanoenabled agricultural strategies to increase food production.


Asunto(s)
Solanum lycopersicum , Azufre/farmacología , Enfermedades de las Plantas/prevención & control , Suelo/química , Plantas/metabolismo , Sulfatos/metabolismo
6.
NanoImpact ; 26: 100407, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35594741

RESUMEN

Nutrient deficiency in food crops severely compromises human health, particularly in under privileged communities. Globally, billions of people, particularly in developing nations, have limited access to nutritional supplements and fortified foods, subsequently suffering from micronutrient deficiency leading to a range of health issues. The green revolution enhanced crop production and provided food to billions of people but often falls short with respect to the nutritional quality of that food. Plants may assimilate nutrients from synthetic chemical fertilizers, but this approach generally has low nutrient delivery and use efficiency. Further, the overexposure of chemical fertilizers may increase the risk of neoplastic diseases, render food crops unfit for consumption and cause environmental degradation. Therefore, to address these challenges, more research is needed for sustainable crop yield and quality enhancement with minimum use of chemical fertilizers. Complex nutritional disorders and 'hidden hunger' can be addressed through biofortification of food crops. Nanotechnology may help to improve food quality via biofortification as plants may readily acquire nanoparticle-based nutrients. Nanofertilizers are target specific, possess controlled release, and can be retained for relatively long time periods, thus prevent leaching or run-off from soil. This review evaluates the recent literature on the development and use of nanofertilizers, their effects on the environment, and benefits to food quality. Further, the review highlights the potential of nanomaterials on plant genetics in biofortification, as well as issues of affordability, sustainability, and toxicity.


Asunto(s)
Biofortificación , Micronutrientes , Agricultura/métodos , Biofortificación/métodos , Productos Agrícolas , Fertilizantes , Humanos , Micronutrientes/análisis , Nanotecnología
7.
J Hazard Mater ; 425: 127973, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34894512

RESUMEN

Nano-enabled phytoremediation is an emerging remediation strategy for soils that are moderately contaminated with persistent organic contaminants, and there is a significant need for increased mechanistic understanding and for case studies. Herein, we evaluated the remediation of PCB28-contaminated soil using combined alfalfa and Fe-based materials, including zero-valent iron at 20 nm, 100 nm, and 5 µm, and also iron oxide nanomaterials including α-Fe2O3, γ-Fe2O3, and Fe3O4 around 20-30 nm. Compared with alfalfa remediation alone (63.2%), Fe-based nanomaterials increased PCB28 removal values to 72.4-93.5% in planted soil, with α-Fe2O3 treatment promoting the most effective pollutant removal. Mechanistically, the crystalline Fe-based nanoparticles were transformed into amorphous forms in the plant rhizosphere, resulting in greater availability and enhanced iron nutrition. This nutritional shift induced root metabolic reprogramming of amino acid and carbohydrate cycling, and related functional bacterial enrichment of Ramlibacter, Dyella, Bacillus, and Paraburkholderia in rhizosphere. A significant positive correlation between amorphous iron and root metabolites-associated microbes with PCB28 removal was evident, implying that iron supplementation selected for rhizospheric microorganisms favored PCBs degradation. Overall, this rhizoremediation promotion strategy of Fe species-metabolites-microbes highlights the potential for the hybrid application of nano-enabled phytotechnology in the remediation of soils contaminated with persistent organic xenobiotics.


Asunto(s)
Nanoestructuras , Bifenilos Policlorados , Contaminantes del Suelo , Biodegradación Ambiental , Medicago sativa , Bifenilos Policlorados/análisis , Suelo , Contaminantes del Suelo/análisis
8.
Environ Sci Technol ; 55(20): 13465-13476, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34078076

RESUMEN

The present study investigated the mechanisms by which large- and small-sized nanoscale hydroxyapatite (nHA) suppressed Fusarium-induced wilt disease in tomato. Both nHA sizes at 9.3 mg/L (low) and 46.5 mg/L (high dose) phosphorus (P) were foliar-sprayed on Fusarium-infected tomato leaf surfaces three times. Diseased shoot mass was increased by 40% upon exposure to the low dose of large-sized nHA compared to disease controls. Exposure to both nHA sizes significantly elevated phenylalanine ammonialyase activity and total phenolic content in Fusarium-infected shoots by 30-80% and 40-68%, respectively. Shoot salicylic acid content was also increased by 10-45%, suggesting the potential relationship between antioxidant and phytohormone pathways in nHA-promoted defense against fungal infection. Exposure to the high dose of both nHA sizes increased the root P content by 27-46%. A constrained analysis of principal coordinates suggests that high dose of both nHA sizes significantly altered the fatty acid profile in diseased tomato. Particularly, the diseased root C18:3 content was increased by 28-31% in the large-sized nHA treatments, indicating that nHA remodeled the cell membrane as part of defense against Fusarium infection. Taken together, our findings demonstrate the important role of nHA in promoting disease suppression for the sustainable use of nHA in nanoenabled agriculture.


Asunto(s)
Fusarium , Solanum lycopersicum , Durapatita , Enfermedades de las Plantas , Ácido Salicílico
9.
J Agric Food Chem ; 68(44): 12189-12202, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33085897

RESUMEN

Micronutrient deficiencies in global food chains are a significant cause of ill health around the world, particularly in developing countries. Agriculture is the primary source of nutrients required for sound health, and as the population has continued to grow, the agricultural sector has come under pressure to improve crop production, in terms of both quantity and quality, to meet the global demands for food security. The use of engineered nanomaterial (ENM) has emerged as a promising technology to sustainably improve the efficiency of current agricultural practices as well as overall crop productivity. One promising approach that has begun to receive attention is to use ENM as seed treatments to biofortify agricultural crop production and quality. This review highlights the current state of the science for this approach as well as critical knowledge gaps and research needs that must be overcome to optimize the sustainable application of nano-enabled seed fortification approaches.


Asunto(s)
Desnutrición/dietoterapia , Nanoestructuras/química , Semillas/química , Biofortificación , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Alimentos Fortificados/análisis , Humanos , Desnutrición/metabolismo , Micronutrientes/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo
10.
Microbiome ; 8(1): 127, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907632

RESUMEN

BACKGROUND: The beneficial use of nanoparticle silver or nanosilver may be confounded when its potent antimicrobial properties impact non-target members of natural microbiomes such as those present in soil or the plant rhizosphere. Agricultural soils are a likely sink for nanosilver due to its presence in agrochemicals and land-applied biosolids, but a complete assessment of nanosilver's effects on this environment is lacking because the impact on the natural soil microbiome is not known. In a study assessing the use of nanosilver for phytopathogen control with maize, we analyzed the metatranscriptome of the maize rhizosphere and observed multiple unintended effects of exposure to 100 mg kg-1 nanosilver in soil during a growth period of 117 days. RESULTS: We found several unintended effects of nanosilver which could interfere with agricultural systems in the long term. Firstly, the archaea community was negatively impacted with a more than 30% decrease in relative abundance, and as such, their involvement in nitrogen cycling and specifically, nitrification, was compromised. Secondly, certain potentially phytopathogenic fungal groups showed significantly increased abundances, possibly due to the negative effects of nanosilver on bacteria exerting natural biocontrol against these fungi as indicated by negative interactions in a network analysis. Up to 5-fold increases in relative abundance have been observed for certain possibly phytopathogenic fungal genera. Lastly, nanosilver exposure also caused a direct physiological impact on maize as illustrated by increased transcript abundance of aquaporin and phytohormone genes, overall resulting in a stress level with the potential to yield hormetically stimulated plant root growth. CONCLUSIONS: This study indicates the occurrence of significant unintended effects of nanosilver use on corn, which could turn out to be negative to crop productivity and ecosystem health in the long term. We therefore highlight the need to include the microbiome when assessing the risk associated with nano-enabled agriculture. Video Abstract.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hormesis/efectos de los fármacos , Nanopartículas del Metal , Nitrógeno/metabolismo , Plata/efectos adversos , Plata/farmacología , Transcriptoma/efectos de los fármacos , Zea mays/efectos de los fármacos , Bacterias/efectos de los fármacos , Ecosistema , Hongos/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Enfermedades de las Plantas/microbiología , Rizosfera , Transcriptoma/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/microbiología
11.
J Hazard Mater ; 389: 121837, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31848091

RESUMEN

TiO2 nanoparticles (nTiO2) have been widely used in many disciplines. However, whether they can be used to improve crops growth and nutritional quality is unknown. In this study, coriander (Coriandrum sativum L.) was treated with 0, 50, 100, 200, and 400 mg/L nTiO2 to evaluate their possible benefit to plant growth and nutritional quality under hydroponic conditions. Our observations showed that 50 mg/L nTiO2 only slightly but insignificantly increased the root and shoot fresh biomass by 13.2 % and 4.1 %, respectively, relative to the control. nTiO2 at this level promoted shoot K, Ca, Mg, Fe, Mn, Zn, and B accumulation, while spatial distribution of K, Ca, Fe, Mn, Cu and Zn in coriander leaves was not affected. No nTiO2 internalization or translocation to shoots occurred. 400 mg/L nTiO2 significantly reduced root fresh biomass by 15.8 % and water content by 6.7 %. Moreover, this high dose induced root cell membrane wrinkling, attributable to their aggregation and adsorption on root surfaces. At 100-400 mg/L, antioxidant defense systems (SOD, CAT and APX) in plant were triggered to alleviate oxidative stress. At an appropriate dose (50 mg/L), nTiO2 can improve nutrient quality of edible tissues without exerting toxicity to plant or posing health risk to consumers.


Asunto(s)
Coriandrum/efectos de los fármacos , Nanopartículas/química , Valor Nutritivo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Titanio/farmacología , Antioxidantes/metabolismo , Coriandrum/crecimiento & desarrollo , Coriandrum/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Titanio/química , Oligoelementos/metabolismo
12.
Sci Total Environ ; 688: 926-934, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31726574

RESUMEN

Drought is a major environmental event affecting crop productivity and nutritional quality, and potentially, human nutrition. This study evaluated drought effects on performance and nutrient acquisition and distribution in sorghum; and whether ZnO nanoparticles (ZnO-NPs) might alleviate such effects. Soil was amended with ZnO-NPs at 1, 3, and 5 mg Zn/kg, and drought was imposed 4 weeks after seed germination by maintaining the soil at 40% of field moisture capacity. Flag leaf and grain head emergence were delayed 6-17 days by drought, but the delays were reduced to 4-5 days by ZnO-NPs. Drought significantly (p < 0.05) reduced (76%) grain yield; however, ZnO-NP amendment under drought improved grain (22-183%) yield. Drought inhibited grain nitrogen (N) translocation (57%) and total (root, shoot and grain) N acquisition (22%). However, ZnO-NPs (5 mg/kg) improved (84%) grain N translocation relative to the drought control and restored total N levels to the non-drought condition. Shoot uptake of phosphorus (P) was promoted (39%) by drought, while grain P translocation was inhibited (63%); however, ZnO-NPs lowered total P acquisition under drought by 11-23%. Drought impeded shoot uptake (45%), grain translocation (71%) and total acquisition (41%) of potassium (K). ZnO-NP amendment (5 mg/kg) to drought-affected plants improved total K acquisition (16-30%) and grain K (123%), relative to the drought control. Drought lowered (32%) average grain Zn concentration; however, ZnO-NP amendments improved (94%) grain Zn under drought. This study represents the first evidence of mitigation of drought stress in full-term plants solely by exposure to ZnO-NPs in soil. The ability of ZnO-NPs to accelerate plant development, promote yield, fortify edible grains with critically essential nutrients such as Zn, and improve N acquisition under drought stress has strong implications for increasing cropping systems resilience, sustaining human/animal food/feed and nutrition security, and reducing nutrient losses and environmental pollution associated with N-fertilizers.


Asunto(s)
Sequías , Fertilizantes , Nanopartículas/metabolismo , Sorghum/fisiología , Óxido de Zinc/metabolismo , Grano Comestible , Nitrógeno/metabolismo , Fósforo/metabolismo
13.
Int J Food Microbiol ; 305: 108246, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31238193

RESUMEN

Cellulosic pads, amended with emulsions containing essential oils of thyme and oregano, exhibited antimicrobial activity against the psychrophilic microbiota of minced beef. In addition, the pads were active against specific meat bacterial species (Pseudomonas putida, Pseudomonas fragi, Pseudomonas fluorescens, Enterococcus faecalis and Lactococcus lactis) and some common foodborne pathogens (Salmonella enterica, Campylobacter jejuni and Staphylococcus aureus). Three emulsions, IT131017, Mediterranean and Etnic, containing different percentages of carvacrol, thymol, linalool, and ɑ and ß-pinene, significantly reduced the growth of S. enterica and P. putida. Pads derived from emulsions Mediterranean and Etnic induced slight (0.3-0.8 Log10 CFUs/g) but reproducible reduction of the psychrophilic microbiota in minced meat and hamburger stored for 12 and 15 days at 4 °C.


Asunto(s)
Antibacterianos/farmacología , Cinnamomum zeylanicum/química , Aceites Volátiles/farmacología , Origanum/química , Extractos Vegetales/farmacología , Carne Roja/microbiología , Thymus (Planta)/química , Monoterpenos Acíclicos , Animales , Antibacterianos/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Monoterpenos Bicíclicos , Compuestos Bicíclicos con Puentes , Bovinos , Celulosa/química , Cimenos , Emulsiones/química , Emulsiones/farmacología , Microbiología de Alimentos , Carne/microbiología , Monoterpenos/química , Monoterpenos/farmacología , Aceites Volátiles/química , Extractos Vegetales/química , Carne Roja/análisis , Timol/química , Timol/farmacología
14.
J Agric Food Chem ; 65(39): 8552-8559, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28905629

RESUMEN

This study evaluated the effects of ZnO nanoparticles (NP) or Zn salt amendment on sorghum yield, macronutrient use efficiency, and grain Zn-enrichment. Amendments were through soil and foliar pathways, under "low" and "high" levels of nitrogen, phosphorus, and potassium (NPK). In soil and foliar amendments, grain yield was significantly (p ≤ 0.05) increased by both Zn types, albeit insignificantly with soil-applied Zn at low NPK. Across NPK levels and Zn exposure pathways, both Zn types increased N and K accumulation relative to control plants. Compared to N and K, both Zn types had a mixed effect on P accumulation, depending on NPK level and Zn exposure pathway, and permitted greater soil P retention. Both Zn types significantly (p ≤ 0.05) increased grain Zn content, irrespective of exposure pathway. These findings suggest a nanoenabled strategy for enhancing crop productivity, grain nutritional quality, and N use efficiency based on Zn micronutrient amendments, with potential implications for improved human and environmental health.


Asunto(s)
Fertilizantes , Nanopartículas/administración & dosificación , Sorghum/crecimiento & desarrollo , Óxido de Zinc/administración & dosificación , Nitrógeno/administración & dosificación , Nitrógeno/análisis , Valor Nutritivo , Fósforo/administración & dosificación , Fósforo/análisis , Potasio/administración & dosificación , Potasio/análisis , Suelo/química , Sorghum/química , Sorghum/efectos de los fármacos , Zinc/análisis
15.
Environ Toxicol Chem ; 24(4): 987-94, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15839575

RESUMEN

Field experiments were conducted to determine the impact of nutrient amendments on the phytoextraction of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p '-DDE) by eight cultivars of cucurbits over a single growing season. Four cultivars of Cucurbita pepo ssp pepo are accumulators and extract percent level quantities of persistent organic pollutants (POPs), whereas C. pepo ssp ovifera and Cucumis sativus are nonaccumulators. The nonamended accumulators phytoextracted 1.0% of the p,p'-DDE and had a translocation factor of 0.44; however, the nonaccumulators removed 0.16% of the contaminant and had a translocation factor value of 0.09. The accumulators also had 3.8 times greater inorganic element content than the nonaccumulators. Duplicate mounds of each cultivar also received weekly nutrient amendments of phosphorus (400 mg/L K2HPO4), nitrogen (200 mg/L KNO3), or nitrogen/phosphorus (400 mg/L K2HPO4, 200 mg/L KNO3); a minus phosphorus treatment involved a 1-L addition of 1 g/L AlSO4 to the soil before planting. When normalized to respective control values (unamended vegetation), the root and stem p,p'-DDE bioconcentration factors (BCF) of the accumulator cultivars were significantly greater than those of the nonaccumulator cultivars under most nutrient regimes. The biomass of accumulator cultivars decreased by up to 61% under certain nutrient regimes, resulting in mixed effects on the amount of p,p'-DDE extracted. Treatment with N and P increased nonaccumulator biomass by 40 to 100%, and increased p,p'-DDE extraction from soil by 75%. Although generally assumed that fertilizer amendments will enhance phytoremediation, as evidenced here by the nonaccumulators, additions of macronutrients may reduce the phytoextraction of weathered POPs by C. pepo ssp pepo. These findings support our hypothesis that the ability of C. pepo ssp pepo to remove sequestered organic contaminants is governed by unique nutrient-acquisition mechanisms.


Asunto(s)
Cucurbita/efectos de los fármacos , Diclorodifenil Dicloroetileno/análisis , Nitrógeno/farmacología , Fósforo/farmacología , Compuestos de Alumbre/farmacología , Biomasa , Cucumis sativus/química , Cucumis sativus/efectos de los fármacos , Cucumis sativus/crecimiento & desarrollo , Cucurbita/química , Cucurbita/crecimiento & desarrollo , Diclorodifenil Dicloroetileno/metabolismo , Fertilizantes , Compuestos Inorgánicos/análisis , Nitrógeno/análisis , Compuestos Orgánicos/análisis , Fósforo/análisis , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Tallos de la Planta/química , Tallos de la Planta/efectos de los fármacos , Estaciones del Año , Suelo/análisis , Distribución Tisular
16.
Int J Phytoremediation ; 6(4): 363-85, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15696707

RESUMEN

Previous studies have shown that zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under field conditions are good and poor accumulators, respectively, of persistent organic pollutants from soil. Here, each species was grown under three cultivation regimes: dense (five plants in 5 kg soil): nondense (one plant in 80 kg soil): and field conditions (two to three plants in approximately 789 kg soil). p,p'-DDE and inorganic element content in roots, stems, leaves, and fruit were determined. In addition. rhizosphere, near-root, and unvegetated soil fractions were analyzed for concentrations of 11 low-molecular-weight organic acids (LMWOA) and 14 water-extractable inorganic elements. Under field conditions, zucchini phytoextracted 1.3% of the weathered p,p'-DDE with 98% of the contaminant in the aerial tissues. Conversely, cucumber removed 0.09% of the p,p'-DDE under field conditions with 83% in the aerial tissues. Under dense cultivation, cucumber produced a fine and fibrous root system not observed in our previous experiments and phytoextracted 0.78% of the contaminant, whereas zucchini removed only 0.59% under similar conditions. However. cucumber roots translocated only 5.7% of the pollutant to the shoot system, while in zucchini 48% of the p,p'-DDE in the plant was present in the aerial tissue. For each species, the concentrations of LMWOA in soil increased with increasing impact by the root system both within a given cultivation regime (i.e., rhizosphere > near-root > unvegetated) and across cultivation regimes (i.e., dense > nondense > field conditions). Under dense cultivation, the rhizosphere concentrations of LMWOAs were significantly greater for cucumber than for zucchini; no species differences were evident in the other two cultivation regimes. To enable direct comparison across cultivation regimes, total in planta p,p'-DDE and inorganic elements were mass normalized or multiplied by the ratio of plant mass to soil mass. For cucumber, differences in total p,p'-DDE and inorganic element content among the cultivation regimes largely disappear upon mass normalization, indicating that greater uptake of both types of constituents in the dense condition is due to greater plant biomass per unit soil. Conversely, for zucchini the mass normalized content of p,p'-DDE and inorganic elements is up to two orders of magnitude greater under field conditions than under dense cultivation, indicating a unique physiological response of C. pepo in the field. The role of cultivation conditions and nutrient availability in controlling root morphology, organic acid exudation, and contaminant uptake is discussed.


Asunto(s)
Cucumis/metabolismo , Cucurbita/metabolismo , Diclorodifenil Dicloroetileno/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Cucumis/química , Cucumis/crecimiento & desarrollo , Cucurbita/química , Cucurbita/crecimiento & desarrollo , Diclorodifenil Dicloroetileno/análisis , Frutas/química , Metales/análisis , Fósforo/análisis , Hojas de la Planta/química , Raíces de Plantas/química , Tallos de la Planta/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA