Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acupunct Herb Med ; 2(3): 196-206, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37808346

RESUMEN

Vaccination is a major achievement that has become an effective prevention strategy against infectious diseases and active control of emerging pathogens worldwide. In response to the coronavirus disease 2019 (COVID-19) pandemic, several diverse vaccines against severe acute respiratory syndrome coronavirus 2 have been developed and deployed for use in a large number of individuals, and have been reported to protect against symptomatic COVID-19 cases and deaths. However, the application of vaccines has a series of limitations, including protective failure for variants of concern, unavailability of individuals due to immune deficiency, and the disappearance of immune protection for increasing infections in vaccinated individuals. These aspects raise the question of how to modulate the immune system that contributes to the COVID-19 vaccine protective effects. Herbal medicines are widely used for their immune regulatory abilities in clinics. More attractively, herbal medicines have been well accepted for their positive role in the COVID-19 prevention and suppression through regulation of the immune system. This review presents a brief overview of the strategy of COVID-19 vaccination and the response of the immune system to vaccines, the regulatory effects and mechanisms of herbal medicine in immune-related macrophages, natural killer cells, dendritic cells, and lymphocytes T and B cells, and how they help vaccines work. Later in the article, the potential role and application of herbal medicines in the most recent COVID-19 vaccination are discussed. This article provides new insights into herbal medicines as promising alternative supplements that may benefit from COVID-19 vaccination. Graphical abstract: http://links.lww.com/AHM/A31.

2.
J Ethnopharmacol ; 268: 113666, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33301912

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis Franch (CCF), also known as Huang Lian in China, is a traditional Chinese medicine that commonly used for more than 2000 years. Clinically, CCF often used as anti-inflammatory, immune regulation and other effects. It has been reported that the decoction containing CCF can be used for the treatment of benign prostatic hyperplasia (BPH) or lower urinary tract symptoms (LUTS). AIM OF THE STUDY: This research aims to investigate the effect of CCF on inhibition of BPH development in vivo and in vitro, and further identify the active compound (s) and the possible mechanism involved in BPH-related bladder dysfunction. MATERIALS AND METHODS: Oestrodial/testosterone-induced BPH rat model was established as the in vivo model. The prostate index (PI) was calculated, the pathogenesis was analyzed and the micturition parameters were determined in the shamed-operated, BPH model and BPH + CCF groups after 4-week administration. The tension in detrusor strips was then assessed upon KCl or ACh stimulation with or without incubation of CCF or active compounds. To further investigate the signaling involved, rat detrusor cells were cultured as the in vitro models, the instantaneous calcium influx was measured and the ROCK-1 expression was detected. RESULTS: Increased PI value and the aggravated prostatic pathology were observed with voiding dysfunction in BPH rats, which were significantly blocked by oral CCF taken. ACh or KCl-induced contractile responses in detrusor strips were significantly inhibited and the micturition parameters were improved when incubation with CCF or its active compounds such as berberine. Both CCF and berberine suppressed the cellular calcium influx and ROCK-1 expression upon ACh stimulation, demonstrating that berberine was one of the active compounds that contributed to CCF-improved micturition symptoms and function. CONCLUSIONS: Taken together, our findings give evidence that CCF and its active compound berberine inhibited BPH and bladder dysfunction via Ca2+ and ROCK signaling, supporting their clinical use for BPH and BPH-related LUTS treatment.


Asunto(s)
Berberina/uso terapéutico , Coptis , Síntomas del Sistema Urinario Inferior/tratamiento farmacológico , Contracción Muscular/efectos de los fármacos , Hiperplasia Prostática/tratamiento farmacológico , Vejiga Urinaria/efectos de los fármacos , Animales , Berberina/aislamiento & purificación , Berberina/farmacología , Células Cultivadas , Síntomas del Sistema Urinario Inferior/fisiopatología , Masculino , Contracción Muscular/fisiología , Técnicas de Cultivo de Órganos , Hiperplasia Prostática/fisiopatología , Ratas , Ratas Wistar , Vejiga Urinaria/fisiología
3.
J Nat Med ; 74(4): 804-810, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32638295

RESUMEN

Two new canthin-6-one alkaloids, 4,9-dimethoxy-5-hydroxycanthin-6-one (1) and 9-methoxy-(R/S)-5-(1-hydroxyethyl)-canthin-6-one (2), together with fifteen known ones were isolated from the roots of Thailand Eurycoma longifolia Jack. Among the known canthin-6-one alkaloids, compounds 9 and 16 were isolated from the Eurycoma genus for the first time. Meanwhile, the nitric oxide (NO) inhibitory activities of all isolates were examined in lipopolysaccharide (LPS)-stimulated RAW264.7 cells at 50 µM. Moreover, a dose-dependent experiment was conducted for active compounds 1, 2, 4, 6, 7, 10, 12-17 at the concentration of 10, 25, and 50 µM, respectively. Consequently, compounds 1, 4, 6, 7, 12, 14, 15, as well as 17 were found to inhibit NO release from RAW264.7 cells in a dose-dependent manner. Two new canthin-6-one alkaloids, 4,9-dimethoxy-5-hydroxycanthin-6-one (1) and 9-methoxy-(R/S)-5-(1-hydroxyethyl)-canthin-6-one (2), together with fifteen known ones were isolated from the roots of Thailand Eurycoma longifolia Jack. Among them, 1, 4, 6, 7, 12, 14, 15, as well as 17 were found to inhibit NO release from RAW264.7 cells in a dose-dependent manner at the concentration of 10, 25, and 50 µM.


Asunto(s)
Carbolinas/química , Eurycoma/química , Alcaloides Indólicos/química , Extractos Vegetales/química , Raíces de Plantas/química , Tailandia
4.
Artículo en Inglés | MEDLINE | ID: mdl-28588640

RESUMEN

OBJECTIVE: To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. METHODS: Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ERα or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. RESULTS: The nuclear translocation of ERα was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ERα and ERß were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ERα, ERß, and AR in the prostate. CONCLUSION: Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA