Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ALTEX ; 37(3): 343-349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32242633

RESUMEN

Sharing legacy data from in vivo toxicity studies offers the opportunity to analyze the variability of control groups stratified for strain, age, duration of study, vehicle and other experimental conditions. Historical animal control group data may lead to a repository, which could be used to construct virtual control groups (VCGs) for toxicity studies. VCGs are an established concept in clinical trials, but the idea of replacing living beings with virtual data sets has so far not been introduced into the design of regulatory animal studies. The use of VCGs has the potential of a 25% reduction in animal use by replacing the control group animals with existing randomized data sets. Prerequisites for such an approach are the availability of large and well-structured control data sets as well as thorough statistical evaluations. the foundation of data sharing has been laid within the Innovative Medicines Initiatives projects eTOX and eTRANSAFE. For a proof of principle participating companies have started to collect control group data for subacute (4-week) GLP studies with Wistar rats (the strain preferentially used in Europe) and are characterizing these data for its variability. In a second step, the control group data will be shared among the companies and cross-company variability will be investigated. In a third step, a set of studies will be analyzed to assess whether the use of VCG data would have influenced the outcome of the study compared to the real control group.


Asunto(s)
Bases de Datos Factuales , Evaluación Preclínica de Medicamentos/métodos , Difusión de la Información , Proyectos de Investigación , Pruebas de Toxicidad/métodos , Bases del Conocimiento
2.
Int J Mol Sci ; 13(3): 3820-3846, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22489185

RESUMEN

There is a widespread awareness that the wealth of preclinical toxicity data that the pharmaceutical industry has generated in recent decades is not exploited as efficiently as it could be. Enhanced data availability for compound comparison ("read-across"), or for data mining to build predictive tools, should lead to a more efficient drug development process and contribute to the reduction of animal use (3Rs principle). In order to achieve these goals, a consortium approach, grouping numbers of relevant partners, is required. The eTOX ("electronic toxicity") consortium represents such a project and is a public-private partnership within the framework of the European Innovative Medicines Initiative (IMI). The project aims at the development of in silico prediction systems for organ and in vivo toxicity. The backbone of the project will be a database consisting of preclinical toxicity data for drug compounds or candidates extracted from previously unpublished, legacy reports from thirteen European and European operation-based pharmaceutical companies. The database will be enhanced by incorporation of publically available, high quality toxicology data. Seven academic institutes and five small-to-medium size enterprises (SMEs) contribute with their expertise in data gathering, database curation, data mining, chemoinformatics and predictive systems development. The outcome of the project will be a predictive system contributing to early potential hazard identification and risk assessment during the drug development process. The concept and strategy of the eTOX project is described here, together with current achievements and future deliverables.


Asunto(s)
Bases de Datos Factuales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Sistemas Especialistas , Bases del Conocimiento , Animales , Minería de Datos , Evaluación Preclínica de Medicamentos , Humanos , Difusión de la Información , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA