Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lasers Surg Med ; 54(2): 256-267, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34350599

RESUMEN

BACKGROUND AND OBJECTIVES: Carbon monoxide (CO) inhalation is the leading cause of poison-related deaths in the United States. CO binds to hemoglobin (Hb), displaces oxygen, and reduces oxygen delivery to tissues. The optimal treatment for CO poisoning in patients with normal lung function is the administration of hyperbaric oxygen (HBO). However, hyperbaric chambers are only available in medical centers with specialized equipment, resulting in delayed therapy. Visible light dissociates CO from Hb with minimal effect on oxygen binding. In a previous study, we combined a membrane oxygenator with phototherapy at 623 nm to produce a "mini" photo-ECMO (extracorporeal membrane oxygenation) device, which improved CO elimination and survival in CO-poisoned rats. The objective of this study was to develop a larger photo-ECMO device ("maxi" photo-ECMO) and to test its ability to remove CO from a porcine model of CO poisoning. STUDY DESIGN/MATERIALS AND METHODS: The "maxi" photo-ECMO device and the photo-ECMO system (six maxi photo-ECMO devices assembled in parallel), were tested in an in vitro circuit of CO poisoning. To assess the ability of the photo-ECMO device and the photo-ECMO system to remove CO from CO-poisoned blood in vitro, the half-life of COHb (COHb-t1/2 ), as well as the percent COHb reduction in a single blood pass through the device, were assessed. In the in vivo studies, we assessed the COHb-t1/2 in a CO-poisoned pig under three conditions: (1) While the pig breathed 100% oxygen through the endotracheal tube; (2) while the pig was connected to the photo-ECMO system with no light exposure; and (3) while the pig was connected to the photo-ECMO system, which was exposed to red light. RESULTS: The photo-ECMO device was able to fully oxygenate the blood after a single pass through the device. Compared to ventilation with 100% oxygen alone, illumination with red light together with 100% oxygen was twice as efficient in removing CO from blood. Changes in gas flow rates did not alter CO elimination in one pass through the device. Increases in irradiance up to 214 mW/cm2 were associated with an increased rate of CO elimination. The photo-ECMO device was effective over a range of blood flow rates and with higher blood flow rates, more CO was eliminated. A photo-ECMO system composed of six photo-ECMO devices removed CO faster from CO-poisoned blood than a single photo-ECMO device. In a CO-poisoned pig, the photo-ECMO system increased the rate of CO elimination without significantly increasing the animal's body temperature or causing hemodynamic instability. CONCLUSION: In this study, we developed a photo-ECMO system and demonstrated its ability to remove CO from CO-poisoned 45-kg pigs. Technical modifications of the photo-ECMO system, including the development of a compact, portable device, will permit treatment of patients with CO poisoning at the scene of their poisoning, during transit to a local emergency room, and in hospitals that lack HBO facilities.


Asunto(s)
Intoxicación por Monóxido de Carbono , Venenos , Animales , Monóxido de Carbono , Intoxicación por Monóxido de Carbono/terapia , Carboxihemoglobina/metabolismo , Humanos , Fototerapia/métodos , Ratas , Porcinos
2.
Lasers Surg Med ; 54(3): 426-432, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34658052

RESUMEN

BACKGROUND AND OBJECTIVES: Carbon monoxide (CO) poisoning is responsible for nearly 50,000 emergency department visits and 1200 deaths per year. Compared to oxygen, CO has a 250-fold higher affinity for hemoglobin (Hb), resulting in the displacement of oxygen from Hb and impaired oxygen delivery to tissues. Optimal treatment of CO-poisoned patients involves the administration of hyperbaric 100% oxygen to remove CO from Hb and to restore oxygen delivery. However, hyperbaric chambers are not widely available and this treatment requires transporting a CO-poisoned patient to a specialized center, which can result in delayed treatment. Visible light is known to dissociate CO from carboxyhemoglobin (COHb). In a previous study, we showed that a system composed of six photo-extracorporeal membrane oxygenation (ECMO) devices efficiently removes CO from a large animal with CO poisoning. In this study, we tested the hypothesis that the application of hyperbaric oxygen to the photo-ECMO device would further increase the rate of CO elimination. STUDY DESIGN/MATERIAL AND METHODS: We developed a hyperbaric photo-ECMO device and assessed the ability of the device to remove CO from CO-poisoned human blood. We combined four devices into a "hyperbaric photo-ECMO system" and compared its ability to remove CO to our previously described photo-ECMO system, which was composed of six devices ventilated with normobaric oxygen. RESULTS: Under normobaric conditions, an increase in oxygen concentration from 21% to 100% significantly increased CO elimination from CO-poisoned blood after a single pass through the device. Increased oxygen pressure within the photo-ECMO device was associated with higher exiting blood PO2 levels and increased CO elimination. The system of four hyperbaric photo-ECMO devices removed CO from 1 L of CO-poisoned blood as quickly as the original, normobaric photo-ECMO system composed of six devices. CONCLUSION: This study demonstrates the feasibility and efficacy of using a hyperbaric photo-ECMO system to increase the rate of CO elimination from CO-poisoned blood. This technology could provide a simple portable emergency device and facilitate immediate treatment of CO-poisoned patients at or near the site of injury.


Asunto(s)
Intoxicación por Monóxido de Carbono , Monóxido de Carbono , Animales , Intoxicación por Monóxido de Carbono/complicaciones , Intoxicación por Monóxido de Carbono/terapia , Carboxihemoglobina , Hemoglobinas , Humanos , Oxígeno , Fototerapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA